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1Introduction

The rise of the Internet and the digital age triggered the collection of huge
amounts of privacy-sensitive data. Enticed by free online services, people
leave digital traces all around the Internet, managed by various online
service providers. Those services enable people to maintain their social
contacts, they open up access to vast amount of information through search
engines, provide various tools to manage all kind of daily live necessit-
ies, such as online shopping lists, banking tools, insurance declarations,
and much more. Various types of information associated with various
activities of people, which used to take place in a private sphere, are now
scattered around over databases all over the world, outside the control
of the original owners of that data. Not only service providers collect
privacy-sensitive data. Governments collect and store increasingly more
information about their citizens. Examples such as automatic recognition
of number plates [120] and retention of telecommunication data [73], show
that more and more information which can be considered as personal and
privacy-sensitive end up somewhere in a database, beyond the reach of the
donors of that data.

It is hard to protect all these data. Various practical examples show that
full security while keeping functionality is hardly possible [76, 2], [119,
117, 118, 102]. Negligence and human mistakes make that personal data
will inevitably be disclosed and exposed to adversaries [52]. Weak policies
can deceive people, giving them an inconsiderate feeling that their data
is protected. Both victim and adversary can be anybody; out of curiosity,
people might gain access to data of others, not only when the data has been
disclosed by accident. Any kind of event can make somebody of interest
to others. Moreover, personal information has become very valuable for
marketeers, making it interesting for criminals to gain access to such data.

To limit the impact of the disclosure of information, one of the pos-
sible solutions is to restrict the collection and to limit the storage of data.
The limited retention principle prescribes that data should no longer be
stored than necessary to fulfill the purpose for which the data have been
collected [5, 18]. Hence, data which cannot contribute to such a purpose
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1. Introduction

should not be collected at all. In this thesis, we embrace this principle
and investigate how this principle can be exploited to limit the impact
of data disclosure, while keeping it possible to offer users interesting and
promising services. Moreover, to overcome the technical problems of irre-
versibly removing data, we will investigate the impact of limited retention
on traditional database storage techniques.

However, our intuition is that data should not be removed at once, but
gradually, comparable to fading footsteps in the sand. By progressively
degrading the privacy-sensitive information, more and more details will be
removed from the data, making the data less privacy-sensitive. This makes
it possible to search for a better balance between data usability and privacy.
For example, a location can be stored with precise coordinates, making it
possible to follow the trace of a car. This location can be degraded firstly to
road number—still possible to use it to predict traffic jams—and finally to
road type—such that the driver can be charged for using specific roads.

The main contribution of this thesis is to investigate the limited retention
principle, and to provide technical solutions to put limited retention into
practice. We formulate the research questions in the following.

1.1 Research questions

The first problem of the limited retention principle is that due to a lack of
transparency, the retention period is often overstated in advantage of the
service provider. Moreover, users do not have the power and the knowledge
they need to negotiate a reasonable retention period. To make limited
retention common practice, we need to provide a framework in which it is
possible to reason about retention periods. So, our first research question
is:

Research question 1. How to model the interest of both service provider
and user, to find the best retention period of privacy-sensitive data?

In Chapter 3 we conceptualize the interest of both parties to make it possible
to reason about limited retention periods.
We relate the worth of personal data for the service provider and the risk for
the user of storing data to the retention period. We combine both interest in
what we name the common interest, such that we can find a retention period
for which this common interest is optimal.

However, the all-or-nothing behavior of limited retention is too rigorous:
after the retention period, the data will be completely destroyed, also
destroying any possible use of the data. This makes it hard to balance data
usability and privacy. This leads to the second research question:

2



1.1. Research questions

Research question 2. How to refine the limited retention principle, to
better balance the interests of service provider and user?

Also in Chapter 3 we introduce a refinement of the limited retention principle
named data degradation.
By using well-known generalization techniques [51], we propose to degrade
the precision of privacy-sensitive data after predefined retention periods,
such that although the usability of that data will decrease, the privacy
sensitivity will also decrease. We introduce the concept of life-cycle policies,
which describe how and when the data should be degraded and finally
removed. In some cases, data degradation can indeed be used to increase
the common interest of both parties.

Policies alone are not enough. The difficulty will be how to implement
such a policy, making sure that the data is indeed irreversibly degraded and
finally removed from the system. Removing data from a database system is
not a straightforward task [71]. Hence, our third objective is to investigate
the technical difficulties associated with implementing and enforcing data
degradation.

Research question 3. What is the impact of data degradation on traditional
database systems, and is it feasible to implement the technique?

In Chapter 4 we will study this impact and propose new techniques required
to support data degradation, followed with a performance analysis in Chapter 5.

We will see that many aspects of traditional database systems need to be
revisited; we provide degradation friendly alternatives for storage structure,
indexes, and transaction management. Using the results of our experi-
ments and analysis we provide suggestions under which conditions which
alternative is the best implementation choice.

To investigate and show the technical feasibility of data degradation, sim-
plification have been introduced which put restrictions on the usability of
data degradation itself. Releasing those simplifications can lead to different
perspectives from which data degradation can be used.

Research question 4. How can the concept of data degradation be further
exploited when the simplifications are released?

Chapter 6 will give an outlook to how data degradation can be extended into
richer models describing the life-cycle of data.
Data degradation can be exploited in several ways, which opens up many
future research directions. We make a first attempt to investigate a service-
oriented approach, in which data degrades according to services’ purpose
specifications. We also investigate an ability-oriented approach, in which
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1. Introduction

not the precision of data is degraded, but the ability to support specific
types of queries.

1.2 Organization of the thesis

The organization of this thesis is as follows:
• Chapter 2 elaborates the problem statement by sketching the context

in which limited retentention and data degradation take place and
defining the threat model. Furthermore, it discusses the underlying
concepts of privacy and anonymity, and motivates why limited re-
tention is necessary. We discuss related work in privacy-aware data
management: anonymization, which shares techniques used by data
degradation, access control, client-side protection schemes, and the
concept of Hippocratic databases. Finally, we look to existing work
on measuring data usability and privacy.

• Chapter 3 elaborates on finding a balance between data usability and
privacy using limited retention, and in particular data degradation,
using the concept of common interest. We will show that there are cases
that data degradation can indeed lead to a higher common interest,
validating the benefits of our approach. Furthermore, we present the
data degradation concepts in more detail.

• Chapter 4 is about the impact of implementing data degradation on
top of traditional database systems. We introduce properties of the
data degradation model in the context of relational database systems,
and investigate what should be done such that data can be irreversibly
degraded taking performance issues into account. We propose new
storage structures and indexes, discuss the transaction mechanisms,
and investigate the impact on query semantics.

• Chapter 5 analyzes the performance costs introduced by data degrad-
ation using a prototype implementation. Using experiments we show
under which conditions which storage structure is best suitable for
particular loads on the database system. Furthermore, it presents an
analysis of index structures, investigating how suitable they are in the
context of data degradation.

• Chapter 6 looks at possible instantiations of the data degradation
model. It is an outlook to how data degradation can be put in prac-
tice, and how the model can be extended to serve different types of
scenarios.

• Chapter 7 concludes and proposes future work directions.
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2Problem statement

In the previous chapter we introduced the privacy problems triggered by
the unlimited retention of privacy-sensitive information. In this chapter
we first provide more background on the underlying difficulties and po-
sition data degradation—and limited retention in general—among other
privacy-preserving techniques, and give an in-depth motivation why lim-
ited retention is an important and necessary component in privacy-aware
database management.

Furthermore, we explain our threat model, and give an overview of
related work in privacy-aware data management. We show that data de-
gradation is orthogonal to most privacy-preserving techniques such as
access control and privacy-preserving data publishing. We conclude with a
short overview of metrics for privacy and data usability.

2.1 Motivation

Privacy has become a popular topic, triggered by the vast amount of web
services with an apparently unsatisfiable desire for their users’ personal
data. Acquiring personal data is big business, a new gold mine for Internet
companies, boosting all kind of new web services, increasing the threat to
privacy even further [35]. It works; Google can reach over half a billion
unique individuals each year, collecting—among many different types of
personal data—their search queries, which to a high extent encapsulate
their daily lives’ habits [36]. Google made in 2008 a revenue of $22.1
billion [127]; given the fact that selling advertisements is Google’s core
business, this amount is a good indication of the value this personal data
has for the company and its clients. Google is not alone; in their footsteps
many other companies followed, and many will follow.

What do the users get in return for their personal data? Indeed, they
profit from all the services which ease their lives. The web has been made
accessible thanks to search engines, and communicating with friends and
relatives has never been easier. However, until the Internet era, transactions
between producer and consumer have been much more transparent for both
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2. Problem statement

parties. The consumer pays the price which has been negotiated between
producer and consumer, and the producer delivers the good or service. If the
price is not satisfactory for both parties, the transaction will not take place.
So, it pays off for the producer to be transparent. Today, business models
are different. Services are offered for free—in terms of money—to the user,
so that, at first glance, there is no reason to negotiate anymore. Personal
information has become to be the currency of the Internet economy [95],
although there is still a lack of an appropriate exchange rate to capture the
privacy risks and the value of personal information. Hence, the market
needs urgently to be regulated and, most importantly, to get transparent.

Here the privacy danger becomes apparent. Transparency is one of the
key foundations of privacy [56]; it must be clear for the user how his or her
data is being handled, stored, and to whom it will be disclosed. Asymmetry
of power between users and service providers leads to privacy risks for
the users, because service providers are in a better position to serve their
interests [54]. Hence, more power and control should be granted to the user;
if the service provider can argue that the data is needed to offer certain kind
of services, the user may want to decide to allow the service provider to
keep the data longer, paying a higher price, most probably benefiting from
a better service. In other words: the price a user has to pay for a service
should be expressed in terms of privacy risks, whereas it was expressed in
terms of money in the old days.

So why is it a problem that companies store all these data about us?
The fact is that, even if we put full trust in the service provider, these data
can always be subject to data disclosure due to attacks, corrupt employees,
governments demanding the data, et cetera. No access control mechanism
has been proved to be both usable and fully secure; to give an example,
even servers of the Pentagon [102] and FBI [118] have been hacked, credit
card companies and mobile communication companies have lost personal
data of their customers on several occasions [123]. Moreover, human mis-
takes are hardly preventable: politicians and policemen lose usb sticks or
other media with sensitive information [105], obsolete personal computers
sold secondhand are subject to forensic analysis with sometimes shocking
results [90]. Governments play an important role too; various types of data
can be subpoenaed by governments, even crossing boundaries. Initially,
the US was granted unlimited access to all bank transactions of all EU
citizens [104]. In such a situation, privacy-sensitive information is taken
fully outside the control of the original owner of that data. Recently, the
European parliament rejected the deal with the US, because the excessive
storage of data was too invasive for its stated purpose [114].

Finally, personal data is often weakly protected by obscure and loose
privacy policies which are unjustly presumed to be good and acceptable for
a given service.

The privacy violation will only increase with the growth of data which
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2.1. Motivation

has been collected about us. All these data, even when “legally” obtained by
the service providers themselves, foster ill-intended scrutiny and abusive
usages justified by business interests, governmental pressures and inquis-
itiveness among people. Not only criminals and terrorists are threatened.
Everyone may experience a particular event (e.g., accident, divorce, job
or credit application) which suddenly makes her digital trail of interest
for someone else. Moreover, identity fraud is nowadays becoming one of
the most serious crimes, with huge consequences for the victims [44]. The
retention problem has become so important and the civil pressure so high
[121] that privacy practices start changing. For instance, Google and other
search engine companies announced to shorten the retention period of their
query logs.

Limiting the retention of personal data indeed reduces the privacy
problems sketched above. Limited retention is a widely accepted privacy
principle, complementary to techniques such as access control, and is
included in various privacy regulations [40]. The principle prescribes that
data should not be stored longer than necessary to fulfill the purpose for
which the data has been collected [5]. By limiting the time that data is
stored, the impact of disclosure of a store is less severe [36].

However, limited retention is difficult to put in practice, because of the
difficulty of determining what the retention period should be. The principle
prescribes that data should not be retained longer than strictly necessary
to fulfill the purpose for which the data has been collected. This implies
that those purposes should be atomic, that is, a purpose can be either ful-
filled completely—within a foreseeable time period—or it will never be
completed at all. For some services—such as the delivery of a book—it
is clear when the purpose has been fulfilled completely, and which data
was necessary to fulfill the purpose. For other purposes, this can hardly be
determined. When, for example, is the purpose of a recommendation sys-
tem completely fulfilled? How long does it need to store privacy-sensitive
context data to make recommendations better?

Privacy-aware data management is required to overcome not only the
dangers of an ever growing hunger for personal information, but especially
the unlimited and unrestricted storage of this information. Without a
counterbalance, on-line companies will continue collecting and retaining
personal information, triggered by the enormous profits which lay ahead,
disregarding the privacy issues they create. This is why we need to find a
mechanism to balance privacy and usability. Otherwise, we either end up
with a lot of highly valuable personal information for the data collector and
zero privacy for the user, or zero value and full privacy [36].
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2. Problem statement

2.1.1 Privacy in relation to anonymity

Privacy is an elusive concept which is hard to define and captures many
aspects [80]. Although tempting, we will therefore never state that we have
the solution for the privacy problem. There are many solutions in literature
which claim to be privacy protecting, but in fact only cover a small subset
of all privacy-related concepts. To make the concept ‘privacy’ workable
and understandable in the scope of our research, we limit ourselves to
the terminology and taxonomy of Halpern et al. [49] and later refined
by Tsukada et al. [89]. They state that privacy is typically about “hiding
personal or private information from others”, or more precisely, to “hide what
has been performed”. Using this understanding of privacy, an attempt to
protect privacy can be achieved from different angles. Limited retention,
and as a refinement data degradation, typically hide data by removing or
obscuring the privacy-sensitive data. Access control techniques typically
try to hide the data from others by limiting the access to that data, whereas
encryption-based techniques hide the true contents of data by cloaking it
with a secret key.

Privacy and anonymity are therefore—especially in the scope of our
research—orthogonal concepts. Privacy is about hiding what has been
performed by, or is related to, a certain individual. Anonymity is about
hiding who performed an action or who is related to—possibly—private
sensitive data. Tsukada [89] identified the concepts of privacy, anonymity,
onymity, and identity, and related them together as in Figure 2.1.

anonymity
(to hide who performed)

privacy
(to hide what was performed)

"dual"

onymity
(to disclose who performed)

"c
on

tr
ar

y"

identity
(to disclose what was performed)

"c
on

tr
ar

y"

"dual"

Figure 2.1 Privacy-related properties [89] showing that privacy is related, but also or-
thogonal to anonymity. The aim of data degradation is to make onymity possible while
preserving privacy. The aim of (for example) k-Anonymity [85] is to provide anonymity while
preserving the identity property.

Strictly following this reasoning about privacy, anonymity techniques do
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2.1. Motivation

not attempt to protect privacy itself. Indeed, making a data set anonymous
protects individuals from being related to privacy-sensitive facts, but do not
hide those facts. Without additional privacy protection, it will therefore
happen that when the anonymization process fails—such as happened in
the infamous aol-case [52]—the victims will end up with no privacy at all.
On the other hand, if privacy protection fails or privacy protection is not
possible at all, in cases where the sensitive information is required for a
given purpose, anonymization can be the solution to protect people from
being linked to the privacy-sensitive information.

Data degradation in relation to anonymity

In many situations people do want to be able to share private information
with others [53]; anonymization does not cover this kind of applications.
The benefit of choosing to hide what has been performed compared to anonym-
ization techniques is that we can keep the identifier intact, and therefore
can support user-oriented services. Indeed, although anonymized data can
support many (research) purposes, most value for commercial parties can
be generated thanks to the personal and identifiable data they possess.

2.1.2 (Limited) Data Retention

In the past years, there has been much debate in politics about the reten-
tion of data. Triggered by the 9/11 attacks, there is a tendency within
governments to demand the retention of telecommunication data to pre-
vent terrorism, accumulated in the Data Retention Directive [18]. At the
same time, Article 29 Working Party, set up by the European Parliament
according to the Directive 95/46/EC [40], urges market companies such as
Google and Microsoft to limit the retention period of data [121]. Hence,
although governments clearly see the need for privacy by enforcing com-
mercial parties to limit the retention periods of privacy-sensitive data, they
are now also convinced they need huge amounts of their citizens’ personal
information to fight against crime. Still, the Convention for the Protection of
Individuals with regard to Automatic Processing of Personal Data, article 5.c
and 5.e, clearly states that personal data undergoing automatic processing
shall be: [103]

5.c adequate, relevant and not excessive in relation to the purposes for
which they are stored;

5.e preserved in a form which permits identification of the data subjects
for no longer than is required for the purpose for which those data
are stored.

Hence, whatever the purpose of data retention is—from either a govern-
mental or business perspective—only data should be stored which serves
that purpose, and only for the period it is required to fulfill that purpose.

9



2. Problem statement

As a result, even though the Data Retention Directive prescribes a min-
imum retention period, this retention period should at the same time be
interpreted as the maximum retention period.

Although covered by law, the limited retention principle has often been
overlooked in the privacy literature. Most research focuses on controlling
the access to personal information, although Agrawal et al. [5]—inspired by
the privacy principles described in the various laws—included the principle
in their Hippocratic database framework. Blanchette et al. [21] argue
that limited retention is necessary to maintain in what they call social
forgetfulness; people should have the opportunity “to move on beyond one’s
past and start afresh”. Mayer-Schöberger [69] suggests “that we should revive
our society’s capacity to forget”; humans have always been forced to carefully
consider the trade-offs of retention and deletion. The price of remembering
everything was simply too high. Although the cost in terms of resources has
been drastically decreased thanks to the digital age, the new cost can be high
if “the lack of forgetting may prompt us to speak less freely and openly”.
Mayer-Schöberger [69] proposes therefore to associate data with meta-data
specifying the retention period of the data, enforcing the automatic deletion
of it, making forgetting the default instead of remembering.

This is not the only reason why limited retention is so important. His-
tory shows that it is very hard to protect private information from being
disclosed by any kind of (access control) technique. The 2008 CSI Computer
Crime and Security Survey [76] shows that 49% of the 522 participating
organizations were subject to virus incidents, and 27% of the organizations
have detected a ‘targeted’ attack. In 17% of the cases the incident involved
the theft or loss of customer data. Acquisti et al. [2] analyzed over a time
window of eight years (from 1999 to 2006) more than 200 privacy breaches
that have been reported by publicly traded firms, of which 80 where caused
by hacks and exploits. They show that there is indeed an impact of privacy
violations, not only for their customers, but also for the companies them-
selves. They conclude that the trust reputation of those visible companies
(their stocks are traded at the New York Stock Exchange) can be significantly
affected by negative reports about their privacy practices.

Moreover, the examples of successful attacks which make it to the news
papers are plenty. Headlines such as “Payment Processor Breach May Be
Largest Ever” [119] and “Prime Minister’s health records breached in database
attack” [117] are not uncommon. Of course, one might argue that those
breaches could have been prevented with better security policies and imple-
mentations. But even when the security policies are strong, and even when
the access control techniques themselves work perfectly, human mistakes,
or even governmental pressure can lead to disclosure of data. A recent
example at the T-Mobile company showed that employers sold millions of
customer records to third parties [101], showing that personal information
is indeed attractive to attackers, and disclosure hardly preventable.
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Benefits of data degradation

Limiting the retention of data is necessary to limit the impact of the unavoid-
able disclosure of privacy-sensitive information. As a new interpretation of
the limited retention principle, data degradation makes it possible to find a
good balance between data usability and limiting the impact of disclosure.
The main benefit is—orthogonal to other privacy protecting principles—
increased privacy with respect to unintended data disclosure. The amount
of accurate data which can be disclosed—whatever the cause is—is limited
and therefore the impact on privacy will be less severe.

2.1.3 Use case scenarios

To introduce our core ideas, we sketch here two scenarios; the first is based
on the retention of query logs by search engines, and the second is based on
the proposals of a congestion pricing system in the Netherlands by the Dutch
government [109]. For both scenarios we will give an example how data
degradation can help solving the related privacy issues.

Use case scenario 1: degradation of query logs

Search engines record the queries of their users in a query log. For example,
Google records the ip address, the user’s browser type, language, date/time,
and cookie_id together with each search query, and the url of the page
the user visits after his search. Even when a user is not explicitly logged
in, using these attributes, queries can be related to individuals so that
personalized advertisements can be presented [52, 35]. Moreover, when
using a search application on a mobile phone, a user can opt-in to provide
exact location details which can be used to provide location-aware search
results [107].

Query logs are a valuable assets for search engines, but also contain
privacy-sensitive information. For example, even when the location is not
explicitly provided, the ip address can be used to determine the location of
the user. Although the relevance for the search engine to know the exact
location of a user throughout his whole history decreases over time, the pri-
vacy sensitivity of those facts might not. Therefore limited retention should
be applied to limit the privacy risk for the users [121]. However, to better
balance data usability and privacy, query logs can also be progressively
degraded.

The search engine personalized services will be less able to define the
interest of a user when the query log is degraded, but can still operate. For
example, during a short period, when precise location information, such as
street address, is available, location-aware search results or advertisements
can be provided. After the locations have been degraded, for example
to the city the user lives in or has visited in the last period, the search

11



2. Problem statement

engine can still provide location-aware advertisements—but with a lower
precision. This process continues, for example by degrading the location to
country, and the precision of the location-awareness of the advertisements
will decrease accordingly.

The benefit for the search engine to apply data degradation instead
of limited retention is that the search engine can benefit longer from the
information contained in the query log, without severely damage the pri-
vacy of their users. In chapter 3 we show that the common interest—the
combination of the usability interest of the service provider and the privacy
interest of the user—can be higher when data degradation is used compared
to limited retention.

Use case scenario 2: congestion pricing system

Although the current plans for a congestion pricing system (see [125] for
a definition) are still in an early stage, the system will be based on gps

devices installed in every car, monitoring the exact location of every car at
any time. The purpose is to price every driven kilometer based on the time
of the day and the road used. For example, driving during rush hour on a
heavily used highway will be more expensive than driving during the night
on a secondary road. The data which is needed to support this purpose
might also be useful for other purposes, making the implementation of
such a system additionally interesting. However, a governmental system
monitoring the movements of citizens will raise privacy concerns. Data
degradation can limit those privacy concerns. Still, the following scenario
is only a hypothetical scenario.

The collection and retention of the exact locations of an individual can
be valuable for both government and private organizations to support dif-
ferent kinds of services. For example, it enables to compute fine-grained
traffic congestion information, and it can help to build short term traffic pre-
dictions. With the use of road usage information, roadwork can be planned.
Commercial parties, such as insurance companies, might want to use the
locational information to provide fine-grained insurance policies (e.g., you
pay less if you don’t drive during rush hours on busy roads). Finally, to
fulfill the main purpose—to be able to bill the driver—information about
the type of roads used per time period is needed.

However, to fulfill those purposes, it is not necessary to endlessly retain
all information in a precise form. To make the stored information less
privacy-sensitive, and to make possible misuse less likely, we can let the
information be subject to timely degradation. A possible life-cycle of the
location attribute is shown in Figure 2.2.

This example shows the typical use of data degradation where purposes
can be matched on the required information, and the required precision of
that information. We name this service-oriented data degradation, which
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Figure 2.2 Example of the life-cycle of a typical privacy-sensitive piece of information
useful for an automatic and fine-grained congestion pricing system. Drivers pay monthly for
the use of specific roads, and therefore this information is required to be kept for a month.
To provide real-time traffic information, it is useful to keep the actual position of a car on a
road for an hour. To be able to estimate the weekly usage of roads and predict traffic jams,
the road number should be sufficient.

will be further discussed in chapter 6. As we have seen in the first use-case
scenario, it is also possible to define a single purpose which can use both
precise and less precise data, although the extent to which this purpose can
be fulfilled will decrease when data is less precise.

2.2 Threat model

A threat model describes which threats a particular technique takes into
consideration, and against which threats it provides protection. This way,
the threat model can be used to position a technique, and to make clear
what can be expected from it. In the following related work section, we will
refer back to the threat model, to indicate why a particular technique is or
is not a solution for the same problems as data degradation.

First, we define a trail as all the information collected by a particular service
provider which can be linked to an individual. Trail disclosure is the event
that a trail is unauthorized exposed to an adversary. We want to limit the
impact of a trail disclosure; the goal of data degradation is not to prevent
trail disclosure.

As mentioned in the previous section, data degradation is a derivative of
the limited retention principle, and therefore the threat model we consider
is the same. It assumes that the server responsible for storing the data is
what we call honest. This means that it implements the retention policies
and does its best effort to enforce the timely removal (or degradation) of the
stored data. Moreover, it implements any security policy needed to restrict
unauthorized access to the data.

Honest is a weak form of trustworthy: a trustworthy server is assumed to
be not vulnerable to trail disclosure [75]. In contrast, we cannot make this
assumption for a honest server. Although it does its best effort to prevent,
it is still vulnerable to trail disclosure. It cannot fully prevent all forms of
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Users Honest database

Unauthorized

disclosure Exposed
digital trail

Figure 2.3 Users provide data which will be stored in a database by the service provider.
The database system is honest : it implements security policies and removes or degrades
data as specified in policies. When the database has been successfully attacked and the
data is disclosed, only a subset of the original data can be scrutinized by an adversary.

attacks, negligence, or weakly defined policies resulting in the exposure of
a digital trail of a victim to an adversary. We argued earlier in this chapter
that the main class of today’s servers are honest, and although sometimes
wrongly assumed, not trustworthy.

The types of causes of trail disclosure we consider are the following:
• Piracy attack: an adversary breaks the security policies and bypasses

the access control techniques. Even those of what we can assume to
be the most secure servers have been shown to be vulnerable to this
type of attack, such as those of the FBI [118] and the Pentagon [102].

• Negligence: due to mistakes or careless handling, privacy-sensitive
data sets can be made public. For example, aol released query logs
which were assumed to be sufficiently anonymized, but nevertheless
revealed trails which could be linked to individuals [52].

• Weak policies: due to a lack of transparency and openness, ignorant
users might discover they have provided too much privacy informa-
tion given their current situation. Merges of service providers might
result in a join of the collected private information of both service pro-
viders, possibly leading to a larger privacy risk than was pre-assumed.
Weak policies might also result in situations that malicious employers
easily can access privacy-sensitive data, as happened recently at a mo-
bile telephone company [101]. Moreover, changes in privacy policies
might be overlooked by the ignorant user, weakening the protection
of their privacy-sensitive information [113].

Everybody can become a victim and can become somehow of interest for
an adversary. Any event can suddenly cause a person to become subject
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to investigation; this can be a divorce, a conflict with your employer, an
accident, et cetera. An adversary can be anybody who can either on purpose
or accidentally get hands on your digital trail.

Limited retention does not protect against continuous spying on the
database. However, to retrieve one’s full digital trail, an attacker needs to
repeatedly gain access to the database server, at least once per retention
period. such a repetitive attacks are more likely to be detected by intrusion
detections systems [32].

2.3 Related work

Related work in privacy-aware data management can be divided in two
main classes, as shown in Figure 2.4. Traditionally, the first class deals with
how to release privacy-sensitive information to third parties in a privacy-
preserving way [17]. We extend this class with techniques which make
information less privacy-sensitive already before disclosure, to limit the
impact of unauthorized disclosure. Hence, although there is a clear differ-
ence in objective and context, limited retention and data degradation fall in
the same class as anonymization techniques, since both try to decrease the
privacy sensitivity of a data set. However, within this class, the techniques
are orthogonal to each other; anonymization-based techniques try to unlink
the privacy-sensitive part of the data from the identity of the users, while,
for example, data degradation aims to decrease the privacy sensitivity of
the sensitive attributes.

The second class deals with limiting the chance of the disclosure of
a privacy-sensitive data set to unauthorized users or third parties. The
most common technique to achieve this is by making use of access con-
trol techniques [77, 78], of which many derivatives exist today. Many
implementations based on access control are designed to enforce policies;
a standardized way of expressing privacy policies is p3p, which we will
elaborate on, including some of its proposed extensions. Other techniques
we will describe in the following are client-based: they are aimed at keeping
the sensitive information only stored or accessible by the users, and run
queries against the information which will be kept safe by the user. The
user herself is then responsible for protecting her own data, and can control
which data will be released to whom.

The organization of this section is as follows. We start with describing
related work in access control and policy-based solutions for protection
against disclosure of privacy-sensitive information, followed by techniques
which make the disclosed information—authorized or non-authorized—less
privacy-sensitive. Where applicable, we will indicate why a given technique
cannot help solving our research questions, or why the technique cannot
give protections against the threats described in our threat model. Where
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Figure 2.4 Rough classification of privacy-aware data management and pointers to related
work. Data degradation can be found in the unauthorized disclosure group. This group
of techniques deals with limiting the impact of unauthorized disclosure. Note that data
degradation is orthogonal to privacy-preserving publishing techniques such as k-anonymity,
and to disclosure prevention techniques such as access-control based techniques. Some
work could have been placed in multiple groups, such as Hippocratic databases. This work
is mainly based on disclosure prevention, but partly discusses limited retention to limit the
impact of unauthorized disclosure.

possible, we indicate whether or not the technique is complementary to
data degradation, and where the technique overlaps with data degradation.
We finish with an overview of the literature on how to measure the amount
of privacy protection, and possible loss of usability, which can be achieved
by a certain technique.

2.3.1 Disclosure-preventing techniques

Access control

Access control basically constraints what a legitimate user can do with the
stored privacy-sensitive information [77], and therefore helps to prevent
security breaches and the unauthorized disclosure of data. The first form
of access control used to limit access to stored data is discretionary access
control (dac) [59], and is the traditional file access restriction mechanism
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in unix systems. Mandatory access control (mac) [78], closely related to
multi-level security systems, uses a partial ordering of security levels (e.g.,
top-secret, confidential, classified, et cetera). Every user and object in the
system is labeled with a security level; a user is only allowed to read an
object if his security level is equal or higher than that of the object, and
should not write an object with a lower security level than his own. This
type of access control is often used in military settings.

Role-based access control (rbac), implemented in many sql databases,
defines which permissions belong to which role [78, 41]. Roles can then be
assigned to individuals. This makes administration of access to information
easier; a particular user is simply assigned an appropriate role, and this
role defines the permissions.

Byun et al. [30] build further on rbac and propose purposed-based access
control. The main contribution is to associate purpose information to the
data elements, and regulate access to those elements based on the purpose
for which it needs to be accessed. By using the concept of intended purposes,
it is possible to describe for which purposes data can be accessed, and which
purposes cannot be used to access the data. It is the systems responsibility
to determine the access purpose, and match this with the set of intended
purposes to decide whether or not access will be granted. Access purposes
can be associated with roles, which can be managed using regular rbac

techniques.
Finally, Oracle introduced the concept of virtual private databases, in

which access to rows and/or columns can be regulated based on a con-
text. Queries are rewritten based on context information, such that only
authorized rows are returned [111].

Platform for Privacy Preferences (P3P)

A first attempt to express privacy policies based on regulations, has been
conducted by the Platform for Privacy Preferences, known as p3p policies [116].
These policies let users know which data will be collected for what purpose,
and how long the data will be retained. It is then up to the service provider
to implement the technical means to enforce the policies.

Although p3p is useful to communicate the resulting policies, the tech-
nique does not contribute to solve our research questions. The actual
content of the policies, such as the retention limit, is still only based on the
services provider’s requirements, and does not directly take users’ privacy
requirements into account. Weak policies can still easily be pushed on the
ignorant user; although p3p is supported by several modern web browsers,
and many web sites already specify policies, the policies are quite concealed
and few users actually read them or are able to fully understand them [37].
To make p3p more accessible to the users, there are tools available nowadays,
which make it possible to express user preferences which can be matched
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against the collectors’ policies [112]. Still, this makes it only possible to
opt-out or reject policies, with as a result that the user cannot benefit from
the offered services, making it unlikely that the user indeed will reject the
policy.

Preibusch [74] proposed an extension to p3p to overcome the limitation
that policies cannot be negotiated. He identifies four dimensions on which
privacy can possibly be negotiated: recipient of the data, purpose for which
the data can be used, retention period of the data, and the kind of data which
can possibly be collected. The model tries to capture the usability for the
user when providing which data, given its privacy sensitivity, and to use
this usability in the negotiation process with the service provider. However,
although stated as one of the privacy dimensions, the model does not take
retention periods into account as a determiner of the risk for a user to
provide its data. Hence, although the amount of data and the type of data
provided to the service provider might be limited due to the outcome of
the negotiation, the provided data might still be stored unnecessarily long
because of an overstated retention limit.

A characteristic of p3p is that it only describes policies and preferences
and does not enforce them [6]. Client-side tools can check if the user pref-
erences don’t restrict data collection as stated in a policy, and warn the
user or even prevent the data to be sent to the server. Server-centric archi-
tectures, such as described by Agrawal [6], make it possible to match the
user preferences as part of the data storage itself, making it easier to also
actually enforce the policies. Hippocratic databases, as we will describe in
the following, are designed for that purpose. Moreover, Bertino et al. [17]
give directions on how to design a privacy-preserving database which is
able to enforce the policies, based on fine-grained access control techniques.
Another attempt is called E-p3p [14], and offers an architecture to enforce
p3p-like policies in enterprises, also based on access control techniques.

Above observations show that p3p is little more than a standardized
complement to the privacy laws of most countries [45]. Especially when
p3p is implemented based on access control, it does not provide protection
against threats described in our threat model. The mentioned systems can-
not prevent database administrators or malicious users to get access to the
privacy-sensitive information in an unauthorized way [14]. Nevertheless,
p3p has been a first step in making the handling of privacy-sensitive data
more transparent, increasing the information symmetry, and helping to try
to maintain the privacy-sensitive information in compliance with laws and
privacy principles.

Hippocratic databases and other disclosure-preventing architectures

“And about whatever I may see or hear in treatment, or even
without treatment, in the life of human beings—things that
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should not ever be blurted out outside—I will remain silent,
holding such things to be unutterable” - Hippocratic Oath [5]

Hippocratic databases, as proposed by Agrawal et al. in 2002 [5], are
database systems which have the task to enforce privacy policies. In the
same spirit as the usage of the ‘Hippocratic Oath’ by doctors—they swear
to ethically practice medicine—a Hippocratic database is responsible for
respecting privacy principles once privacy-sensitive information entered
its system. The ten principles on which Hippocratic databases are built
are directly derived from privacy laws [40]; they are purpose specification,
consent, limited collection, limited use, limited disclosure, limited retention,
accuracy, safety, openness, and compliance.

Some of those principles we already discussed before. For example,
purpose specification requires that for all the data which has been stored in
the database, the purpose for which the data has been collected is associated
with that data. Massacci et al. [68] provide a way to reason about purposes
and the data needed to fulfill those purposes. Consent requires that the
donor has given its consent for those associated purposes. This is in the
spirit of p3p, which makes it possible to communicate those purposes.

A Hippocratic database has to enforce the limited disclosure principle,
which states that data should only be disclosed for purposes for which
consent has been given. Because they are not capable of regulating access
per data item, traditional access control mechanisms do not have the cap-
abilities to enforce this limited disclosure principle. LeFevre et al. [61]
provided a solution based on query rewrite rules which make it possible
to limit access on a cell level, based on privacy meta-data stored in the
database. However, although the technique is transparent for applications,
and indeed regulates access to the stored data, it will not prevent malicious
database administrators to bypass the access control mechanism. Moreover,
any attacker who can bypass the access control mechanisms and grant
himself access to the plain data files, will violate the limited disclosure
principle.

Principles such as safety and compliance require that personal inform-
ation shall be protected against theft and other abuse, and that the donor
of the information should be able to verify compliance with the principles.
Still, the donor can only expect that the system is honest and has no guaran-
tees that the system will never be successfully attacked, even if it can held
the database responsible. The limited retention principle helps to limit the
impact of such an event. However, an open question remains how to effect-
ively remove the data from the tables and log files [5, 71, 81]. Moreover,
when multiple purposes are defined, the data has to stay in the system to
serve the longest lasting purpose. A more fine-grained definition of limited
retention is required to prevent that more data than needed is kept to fulfill
those purposes. The limited retention principle as stated for Hippocratic
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database only covers the restriction of the quantity of data needed for a
purpose, but not the quality, whereas both quality and quantity determine
the privacy sensitivity of the data [29, 53]. A more extended discussion on
limited retention will follow later in this section.

Byun and Bertino [29] recognize that the decision to provide access to a
particular data item should not be binary: access to a data item should not
be either allowed or denied. For some applications, access to a less precise
value of a particular data item can be sufficient to fulfill its purpose. By
using generalization techniques, data can be disclosed through so-called
micro-views. Those views provide different representations of the same
data based on the associated privacy policy. Instead of not disclosing the
data item at all, now at least a less precise representation of the data can
be provided to an application, increasing the overall usability of the data.
Whereas micro-views use this assumption to refine the limited disclosure
principle, data degradation is based on the same assumption to refine the
limited retention principle.

More privacy-preserving architectures have been proposed. For example
PawS [60] (Privacy Awareness System) provides a sense of accountability for
protecting privacy, but explicitly does not give any guarantee. The system
aims to provide control to the users, and to provide ways to check whether
the system indeed complies with the privacy policies, in the same spirit
as Hippocratic databases. Again, although the system can be considered
as being honest—it implements all reasonable access control techniques
to prevent security breaches—it still requires limited retention to help
overcome the fact that the system is not tamper-proof.

Server-side encryption

Although not completely preventable, the chance of a trail disclosure be-
cause of a piracy attack can be limited by applying various security meas-
ures. Encryption [50] can be used, but as long as the encryption keys are
managed by the service provider, the technique is ineffective to prevent trail
disclosure by negligence and weak policies, and it does not help to limit
the impact of such a disclosure [48, 25]. Server-side encryption does not
prevent trail disclosure by malicious data administrators, when the data is
subpoenaed by court, or when the server cannot be fully and permanently
trusted. Intrusion detection systems (ids) [32] can be used to detect and
prevent repetitive attacks, and is therefore very useful in combination with
limited retention. With ids it will be hard for an attacker to obtain a large
set of consecutive history of data by spying a database.
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Client-side protection

When the decryption keys are not stored at the service provider, and the
user is needed to decrypt the privacy-sensitive information, encryption
can still be a solution to prevent trail disclosure. Some queries can be
executed partly on the encrypted data stored on the server, and for the
remainder the queries will be executed at the client-side, where the data
can be decrypted [48]. Bouganim et al. [25] propose a solution based on
secure chips on (for example) smart cards required to execute queries on
the server. Finally, information sharing across private databases [4] makes
it possible to execute queries without disclosing the underlying privacy-
sensitive information.

Other—visionary—techniques have been proposed to put the donor in
control of his data, such as the p4p framework [3] (not to be confused with
p3p). The framework aims at the ‘paranoid’ user who does not trust the ser-
vice provider and wants full control over what is released to whom. Instead
of having to trust all service providers to which sensitive information has
been sent, the user only has to trust a single trusted agent. Confab [53], a
toolkit for the construction of privacy-sensitive ubiquitous computing ap-
plications, is designed based on the idea that personal information should
be processed as much as possible at the end-users’ computer. Like p4p, the
main purpose is to let users be in control over what is disclosed to service
providers.

Although these solutions can prevent trail disclosure, they require that
each query and update will first be communicated to the clients, putting a
severe constraint on applications and service providers. In addition, such
techniques require the end-user site to be trusted. This assumption is diffi-
cult to put into practise, since end-user sites are often infected by viruses
and less protected than central servers. Introduction of secure hardware
on the client side make this assumption valid, but requires adapting the
processing techniques to strong hardware constraints [7]. Limited retention
does not put these restrictions on the applications, since data can still be
managed by the service provider in a centralized storage model, where only
honesty is required.

2.3.2 Privacy-preserving data disclosure

In the previous section we described attempts to limit the disclosure of
data, mainly with the use of access control techniques and various security
measures. Another class of privacy-preserving techniques focuses on lim-
iting the privacy sensitivity of a data set when the data will be disclosed
anyway. In this section we make a distinction between voluntarily publishing
a data set, and the unauthorized disclosure of a data set. Although the cause
is different, both types of disclosures result in the exposure of a data set to
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possible adversaries, which can use all possible available tools to scrutinize
the data set to violate privacy.

Still, although the result of disclosure is the same—namely the exposure
of data to possible adversaries—the underlying threat model is different.
Privacy-preserving data publishing [84, 85, 62, 66, 88, 97, 1] assumes that
as long as the data has not been published yet, the data is stored on a
trusted server which thus is not vulnerable to attacks. After publishing,
the data cannot be protected anymore, and therefore needs to be made less
privacy-sensitive. The objective is therefore to publish the data set in such
a way that no (or as little as possible) privacy-sensitive information can
be linked to individuals, while keeping the overall data set as useful as
possible. In the following we summarize the main contributions in this
field; for an extensive survey we refer to Fung et al. [42].

Limited retention and data degradation aims to minimize the impact
of unauthorized disclosure. As we have argued before, solutions based on
limiting the disclosure of privacy-sensitive information can only give a sense
of accountability; it can not give any guarantee. Hence, in the threat model
considered by limited retention, as discussed in Section 2.2, it is assumed
that data can be disclosed at any time and not at a predefined moment as is
the case with data publishing. By limiting the retention of data, and thus
keeping the data set small, the privacy sensitivity is reduced at any moment
in time compared to the case when no privacy-preservation was applied.
Hence, by applying limited retention the data is always prepared for being
disclosed. As a result however, any usability of the data will be removed in
the process, although the remaining set of data which is disclosed is still
privacy-sensitive.

Why not continuously applying privacy-preserving data publishing
techniques to the stored data set, instead of using limited retention tech-
niques to limit the impact of unauthorized disclosure? Firstly, in many
cases the service provider wants to be able to provide personalized services.
After applying anonymization techniques, this is not possible anymore.
Secondly, anonymization techniques can in general not be applied to a
dynamic data set without keeping the original data, or at least a subset
of it; the techniques are usually only applicable to make the data set less
privacy-sensitive in one single run. If the original data has to be retained in
the system, the technique does not fit into our threat model.

Still, as we will see in the following, data degradation borrows techniques
used by privacy-preserving data publishing. Moreover, to fully understand
the benefits and applicability of data generalization, and to be able to
not confuse data degradation with anonymity, a good understanding of
anonymity is helpful.
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Anonymity research

The first category of threat models considered by privacy-preserving data
publishing contains three types of possible privacy threats [42]. The privacy
of an individual is breached if:
record linkage The attacker can link an individual to a record, or a group

of records in the published data which are likely to belong to that
individual. It is assumed that the attacker knows that the record of
the victim is in the published data set.

attribute linkage The attacker can infer what the sensitive values belonging to
a particular individual must be, or most likely are, given the published
data set, and possible background knowledge of the attacker. Again,
it is assumed that the attacker knows that the record of the victim is
in the published data set.

table linkage The attacker can infer that the record of a particular victim is
or is not in the published data set.

The second category of threat models deals with the prior and posterior
beliefs of an adversary when the data is published. The privacy of an
individual is breached when the attacker has more knowledge, or can know
a privacy-sensitive fact with a higher probability than before he examined
the published data.

When privacy-sensitive data has to be published without the possibility to
link privacy-sensitive data to an individual (record linkage), the most obvious
way to anonymize the data is to remove all unique identifiers, such as name
or the social security number. However, Sweeney [83, 84, 85] showed that
many data sets also contain a so-called quasi-identifier which, combined
with external information, can be used to uniquely identify individuals.
The example often used in literature is that 87% of the US population can
be uniquely identified by the combination of their date of birth, zip-code
and gender [85]. As a result, to make linkage impossible, not only those
attributes which directly identify a user have to be removed, but also those
attributes which form the quasi-identifier.

However, simply removing all (quasi)-identifying attributes leads to
a maximal loss of usability. For many data mining purposes, it is inter-
esting to know the relation between different types of users—for example
grouped by geographic location—and other attributes. Although perfect
for privacy, by removing the identifying attributes, such a linkage is not
possible anymore. To achieve a better trade-off between usability and pri-
vacy, Sweeney introduced the concept of k-anonymity. A data set is said to
be k-anonymous, when for each record at least k− 1 other records share the
same quasi-identifier. The equivalence class of a record r in a published
table T, is the set of all records in T which contain the same quasi-identifier
as r [72]. To form such an equivalence class, individual attributes values
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[1− 2] [3− 4]
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[5− 6]

a ip address

any

ie ff

b browser
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≥ 1280

1280x1024 1900x1600

< 1280

1024x800

c screen

Figure 2.5 Example of generalization trees for ip (represented as a single number),
browser and screen. Other generalization schemes are possible too. For example, an
additional level might be added to generalize from a set of two ip address, to a set of three
ip address. Hence, those generalization trees are arbitrary and can be adjusted to match
application requirements.

of the quasi-identifier can be generalized so that more records share the
same attribute values, and the same quasi-identifier. Three different gen-
eralization trees, in some literature named taxonomy trees, are pictured in
Figure 2.5.

Example 1. To illustrate k-anonymity, we use an example based on a simple
query log. The log contains the name of the user (for this enterprise search
engine you have to sign-in), an ip address (for simplicity we represent the
ip address with a single number), the browser (either internet explorer or
firefox), the user’s screen resolution, the query and the url of the suggested
website. We say that the ip address is not a unique identifier, since the
address can be shared by other users. In practice, additional characteristics
of the users’ platform, such as browser, screen resolution, browser settings,
operation system, et cetera, can be used to uniquely identify a user. In this
example we additionally say that the combination of ip, browser, and screen
resolution can be used for that purpose and thus form a quasi-identifier,
and that this information can be public knowledge used by an adversary. A
naive anonymization method would be to remove only the name from the
query log, as in Table 2.6b. However, by joining this table and the public
information in Table 2.6a, the rows can be linked to individuals. Table 2.6c
shows a 3-anonymized version of the data, containing three equivalence
classes.

k-Anonymity has a number of shortcomings which make that correctly
anonymizing a data set, which both ensures sufficient privacy and maintains
enough usability, is not an easy task. We name some of those problems,
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Name Ip Browser Screen

Alice 1 ie 1900x1600
Bob 1 ff 1900x1600
Cathy 2 ie 1284x1024
Doug 3 ie 800x600
Emily 4 ie 1024x800
Fred 4 ie 1284x1024
Gladys 5 ff 1024x800
Henry 5 ie 1284x1024
Irene 6 ie 1284x1024

a External table

Ip Browser Screen Query Url

1 ie 1900x1600 breast cancer cancer.com
1 ff 1900x1600 Mexican flu influenza.org
2 ie 1284x1024 cervical cancer cancer.com
3 ie 800x600 dogs dogs.com
4 ie 1024x800 cats cats.com
4 ie 1284x1024 children swimming flickr.com
5 ff 1024x800 jobs werk.nl
5 ie 1284x1024 britney spears itunes.com
6 ie 1284x1024 Muslim church religions.net

b Non-anonymized version of the data before publishing.

Ip Browser Screen Query Url

[1− 2] any ≥ 1284 breast cancer cancer.com
[1− 2] any ≥ 1284 Mexican flu influenza.org
[1− 2] any ≥ 1284 cervical cancer cancer.com
[3− 4] ie any dogs dogs.com
[3− 4] ie any cats cats.com
[3− 4] ie any children swimming flickr.com
[5− 6] any any jobs werk.nl
[5− 6] any any britney spears itunes.com
[5− 6] any any Muslim church religions.net

c 3-anonymized version of the data after publishing

Figure 2.6 Simplified example of a query log containing a set of identifying attributes,
and privacy-sensitive attributes. We assume that the ip address, and which browser and
screen resolution of a particular user, can be public knowledge. Name is a unique identifier,
<ip,browser,screen> form the quasi-identifier, and <query,url> are the sensitive attributes.
Although the unique identifier has been removed from the data in table b., the privacy-
sensitive information can still be linked to individual users. The data in table c. has been
correctly anonymized such the probability of relating a particular query to the correct user
is 1

3 . For demonstration purposes, and in line with the simplifying assumptions of most
anonymization techniques, we assume that there is only one entry per user in the query log;
in practice this will not be the case.
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and refer where applicable to literature discussing those problems in more
detail:

• First, the data publisher has to know which attributes an adversary
can use to link the published data records to an external table. Hence,
it has to choose a good quasi-identifier. Choosing a too small quasi-
identifier leads to privacy risks, whereas a too large quasi-identifier
leads to loss of usability. For example, if screen resolution would be
left out from the quasi-identifier in our example, an adversary would
still be able to perform a successful record linkage attack. A good
choice of the quasi-identifier is still an open issue [42].

• Second, k-anonymity and many of its derivatives assume that each
individual has only one record in the data set, as in our example.
In practice, especially in query logs, this assumption will not hold.
Without additional measures, users with many entries in the log will
be less protected, since within an equivalence class of a certain record
with respect to its quasi-identifier containing k records, a large subset
might belong to one single individual. This violates the k-anonymity
property that each record in an equivalence class can be linked to at
least k distinct individuals.
To solve this problem, Wang et al. [94] proposed (X,Y)-anonymity;
each value in X (for example the quasi-identifier) must be linked to at
least k distinct values in Y. This Y can for example be an incremental
person identifier which after publishing cannot directly be linked to
an individual, but can be used to group all records belonging to the
same person identifier together. The number of distinct values in Y
that co-occur with any value x in X, must be larger than k. Hence,
there must be at least k different individuals which share the same
quasi-identifier in a group after anonymizing the data set.

• Third, if most of the sensitive values in the same equivalence class
are equal or similar, an attacker does not need to link a particular
record in that class to the correct individual, to have a good guess on
the sensitive value of that victim. For example, although Table 2.6c is
3-anonymous, two out of the three individuals have cancer. Hence,
the probability that Alice has cancer is not 1

3 but 2
3 . Moreover, given

the background knowledge that Bob cannot have breast cancer nor
cervical cancer, Bob must have Mexican flu—assuming that an entry
in a query log reveals one’s disease—and the probability that Alice
has cancer is not 2

3 but 1.
This type of attack is called attribute linkage, and has been addressed
by, among others, Machanavajjhala et al. [66]. They introduced `-
diversity, which requires that each equivalence class contains at least
` distinct sensitive values. Martin et al. [67] propose a language
which can express background knowledge, and an algorithm which
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can sanitize a data set given the worst case background knowledge
scenario. Still, the more background knowledge is taken into account,
and the more a data set needs to be sanitized to preserver privacy,
the more usability will be lost. For an overview of all related work
discussing this problem we refer to [42].

• Fourth, k-anonymity does not prevent table linkage, that is, the ability
to know if a victim is or is not part of a particular published (sub)
data set [72]. For example, if the publisher publishes an anonymized
set of records containing the quasi-identifiers of individuals which
have cancer, it should not be possible for an attacker to know if a
victim is in that data set or not. If we would release the records of
the individuals who have cancer, we could for almost all persons in
the external table know whether or not they are in that released set.
Only for Alice, Bob and Cathy the probability is 2

3 . This problem is
related to the problem of diversity, as sketched above. The notion
of δ-presence requires that the probability that a victims record r is
present in an published data set is bounded by an interval [δmin,δmax],
where the published data set T is a subset of the public available
knowledge P, and r ∈ P. Nergiz et al. [72] provide an algorithm which
ensures δ-presence; however, the algorithm assumes that it is known
what the external knowledge P of the attacker is, which might not be
a practical assumption [42].

• Fifth, k-anonymization does not take into account that some records
are more privacy-sensitive than others, and that some users require
less privacy protection than others. Xiao et al. [97] provide personal
privacy, by letting record owners specify how much privacy they
require, and what level of sensitivity may be exposed to an attacker.

• Sixth, once a k-anonymous data set has been published, it cannot be
updated anymore. However, it may be desirable, especially consid-
ering our threat model (see Section 2.2), to keep only an anonymous
version of a data set, and insert new records directly in the anonymous
set. The problem is that for each record, there must be already k−1
other records in the data set which share the same quasi-identifier.
If not, already present records have to be generalized further to be
able to insert the new record. This might result in a data set where
all quasi-identifiers have been generalized to the most general level.
Byun et al. [31] propose to buffer inserted records until there are
enough records sharing the same quasi-identifier, possibly resulting
in situations that the insertion will be delayed endlessly, and/or that
large memory buffers are required.

Data degradation uses the same generalization techniques as used with
anonymization. However, as said earlier, k-anonymity and all above men-
tioned derivatives of the technique protect against different threats than
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limited retention (and data degradation). Moreover, as we have seen, one of
the main problems of anonymization is to provide the necessary guarantees
that a particular individual cannot be linked to a sensitive value, even not
with small probabilities, and especially not when data usability plays an im-
portant role. Although it is possible to degrade (quasi)-identifying attributes
as well, data degradation does not aim at providing anonymity, but takes
another approach to protect privacy by decreasing the privacy sensitivity
of the sensitive attributes themselves. Hence, it does not prevent record
linking, attribute linking, or table linking (until the point the sensitive
values are fully removed).

The first difference in technique is that we do not need to generalize the
(quasi)-identifier of a record, but only the sensitive attributes. The work
on t-plausibility [55] adopts the same strategy in the context of sanitizing
text documents. A text document d is t-plausible if at least t base texts can
be generalized to d using a given ontology (comparable to generalization
trees). Hence, given a t-plausible document, there are at least t possible
‘original’ texts. The result is that texts can still be related to individuals,
but the sensitivity of the text itself has been decreased.

The second difference is that we do not need to generalize many records
at the same time to ensure that at least k records share the same sensitive
attribute. There is no foreseeable benefit—other than performance related—
of such a method, which makes it easier to degrade dynamic, incremental
data sets. Third, the assumption that only each individual has only one
record in the data set is not needed, making data degradation better ap-
plicable for most applications in which several facts of an individual are
recorded over time, such as in query logs.

In cases where data miners have much more interest in the sensitive
values, and not (or much less) in the identity of the record owners, it is
not desirable to degrade the sensitive values. In this case, anonymization
will be a better choice. However, when the relation between identity and
sensitive value is of more interest, a choice can be made between degrading
sensitive values or hiding the identity. However, anonymization can always
be used as a technique orthogonal to data degradation.

Data retention and data removal

The motivation behind limited retention is to limit the amount of privacy-
sensitive data which can be disclosed, when the disclosure itself is not
unauthorized. Indeed, when disclosure is not authorized, there is no time
or opportunity to apply any privacy-preserving publishing technique to
make the data anonymous. However, limited retention also has problems,
of which some have been studied in literature, and some will be discussed
in this thesis (see the research questions in Section 1.1). In this section we
give a short overview of existing work.
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One of the problems in data retention is the question of what to keep,
and what to remove, and especially how to remove. Miklau et al. [71] ar-
gue that both retaining data to the benefit of system accountability and
removing data to the benefit of privacy are legitimate goals. However, they
argue that although it can be indeed useful to store a historical record of
activities on the data to detect errors and malicious behavior, those benefits
are small compared to the threat to privacy. The disclosure of a single
privacy-sensitive item can cause a big privacy threat, while the single item
alone is not important for accountability purposes. Moreover, data which is
retained for the purpose of accountability (such as transaction logs) often
falls outside the protection of access control mechanisms. Besides, the
standard interface to the database system (such as sql) shows a different
view of the stored data than actually can be recovered by, for example,
forensic analysis of the database and the underlying file system [81]. There-
fore Miklau et al. propose that the system should be transparent in the sense
that queries on the stored data faithfully represent what is retained in the
system. This requires that data is indeed removed from transaction logs,
indices, et cetera when the user issues a delete statement, or when retention
periods expire. We adopt this principle in chapter 4.

Securely deleting data, that is, removing data such that it cannot be
recovered is not an easy task [81]. The most basic technique to securely
delete data is to overwrite the data. However, overwriting data on disks
can be expensive, especially when the granularity is high. In theory, every
delete operation would require one I/O operation, which is costly. Moreover,
forensic analysis can reveal the original data after it has been overwritten.
By analyzing the disk using magnetic force microscopy, it is possible to
reveal the previous value of a particular bit, due to the fact that a disk head
is never able to write an exact ’zero’ or ’one’, but only something what is
close to it; ’how close’ is related to the previous value of the to be written
bit [47]. Hence, when an attacker is able to get hands on the physical disk,
he might still be able to recover data which is assumed to be deleted.

Boneh et al. [24] suggested to ’delete’ data using encryption techniques.
The idea is simple: encrypt the data, and throw away the encryption key
when the data should not be recoverable anymore. Assuming that the en-
cryption is strong enough to be unbreakable in a reasonable amount of
computing time, the effect is the same as physically destroying the data.
Boneh et al. adopt this principle to be able to ’remove’ data from old
backups without needing to access those backups (which might be very
expensive, especially when those backups are stored on tapes and off-site).
However, destroying an encryption key means that all data encrypted with
that key will be destroyed. Hence, to be able to perform fine-grained dele-
tion, every data item needs to be encrypted with its own key, which requires
fine-grained key management techniques. To enforce timely deletion of
data using encryption, a third party can be used to manage those keys [87].
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The third party is needed to gain access to the encrypted information, which
will revoke the encryption key after the retention period has expired. Still,
every access of the data requires decryption of the data, and requires, de-
pending how the keys are management, costly key management overhead.
Hence, although very efficient for deleting data, encryption has its short-
comings which make the technique less applicable in the context of service
providers requiring fast and easy access to the stored data [71].

An important aspect of data retention is not only to decide what to re-
move, but also to decide what to retain. Although for privacy purposes the
retention period should be bounded with a maximum, legislation might re-
quire that some records are stored during at least a certain period, requiring
that those records should be protected against user deletes [15]. Protecting
records against deletion can severely harm privacy when retention periods
are overstated and not match the purpose; however, it can be indeed useful
for service providers to be able to protect records against deletion to protect
usability. In line of the limited retention principle, the records should be
removed directly after the minimal retention period expires. We adopt this
principle in chapter 6, where we will look at service-oriented data degrada-
tion. Ataullah et al. [15] provide a formal framework which enables users to
specify retention limits, and makes it possible to verify that those retention
limits do not harm protective retention policies. In a similar spirit, Schmidt
et al. [79] describe an extension to relational algebra, to incorporate the
notion of expiration time into relational database systems.
Data degradation, as a form of limited retention, adopts many of the tech-
niques described in this section. First, we recognize the need for secure
deletion, since it should not be possible to reverse a degradation step. In our
threat model, this is a necessary requirement and differentiates data degrad-
ation from access control based protection. Without the requirement, access
control techniques could be used to implement data degradation, providing
the same level of protection, such as the work on micro-views [29]. In
chapter 4, where we discuss the impact of data degradation on traditional
database systems, we discuss this problem in more detail.

2.3.3 Metrics for privacy and usability

The idea behind privacy-preserving data publishing—and also behind data
degradation—is to find the best trade-off between data usability and privacy.
Such a trade-off can only be quantified if both usability and privacy can
be measured. Most work concentrate on guaranteeing at least the privacy
requirement—such as k, `, (X,Y), et cetera—while maintaining as much
usability as possible [65]. By increasing or lowering the privacy requirement,
less or more usability can be maintained. However, as a result, Brickell et al.
argue that even small increases in privacy caused by data anonymization
result in a destructive loss of usability.
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However, the difficulty is how to measure data usability, and the ob-
tained privacy. It is hard to speak about a trade-off if the privacy guarantees
themselves, as given by the different techniques, cannot be quantified.
Some sort of basic ordering of privacy-preserving publishing techniques
is possible. As we have seen in Section 2.3.2, we can say that k-anonymity
provides less privacy than `-diversity, but provides more usability since
less generalization of the attributes is required. To quantify the privacy
guarantees, and thus make statements as how much more privacy a tech-
nique provides, is not an easy task, since the concept ‘privacy’ is vague.
Moreover, it can be the case that, for example, according to the definition
a data set is k-anonymous, but that due to inference techniques the actual
level of privacy is negligible. We have seen such an example in Table 2.6c,
where although the table is said to be 3-anonymous, Bob has not gained any
additional privacy compared to the non-anonymized data set.

In the following we give an overview on existing work on metrics for
privacy and usability. We start with a summary of the privacy objectives
of some of the anonymization techniques we discussed earlier. Although
we do not provide a metric to measure the effect of data degradation, this
related work can give some directions on how such a metric might look like.

Privacy and anonymity metrics

A strict interpretation of privacy in the context of privacy-preserving data
disclosure is, that an individual’s privacy has been preserved when an
attacker does not know more facts about this individual after he has seen
the published data set, compared to his knowledge before he has seen the
published data set. This principle is named differential privacy, and is hard
to achieve if background knowledge of the attacker has to be taken into
account [39]. Most work on privacy-preserving data disclosure therefore
assumes the presence of limited background knowledge, and privacy is
only breached when an attacker can successfully link a record, attribute or
table to an individual.

Hence, in general, the ‘privacy’ provided by most anonymization tech-
niques can be expressed as the probability that a certain record or attribute
value can be linked to an individual. With k-anonymization [85], the prob-
ability that a record can be linked to an individual should be at most 1

k
for each record. With `-diversity [66], and especially in the p-sensitive
k-anonymous variant [88], each group of records sharing the same quasi-
identifier should contain at least ` different sensitive values. Note that such
a `-diverse data set automatically is k-anonymous, since ` records must
share the same quasi-identifier, and therefore the ‘privacy-protection’ is at
least equal or better than that of k-anonymity.

However, those ` different sensitive values should be ‘different enough’
to really provide privacy. For example, if all really confronting and privacy-
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sensitive diseases end up in the same group, the actual amount of privacy
is still limited. Moreover, since ` is not based on a probability, such as k,
it is hard to translate the meaning of the number to a human sense for
privacy. As a result, it is hard to use such a number for making a trade-off
between privacy and usability [42]. Another measure for privacy risk is the
probability that a sensitive value can be inferred; it has been proposed by
Want et al. [93]. For each quasi-identifier and sensitive value combination,
the confidence of an attacker that he guesses the correct sensitive value for
a particular quasi-identifier should be bounded to a percentage h. Still,
although all measures say something about the privacy risks after a data set
has been disclosed, it is hard to relate them to each other.

Data degradation can use the same approach to fix a privacy guarantee
as used by anonymization techniques. When a particular data item x is
generalized to x′, it is hidden in a group with n − 1 other possible values
which also could be generalized to the same value x′ . The larger this group
is, the less privacy-sensitive a data item is. Note that this technique does
not require that there are n− 1 other records in the data set which have the
same sensitive data item x′ . Hence, there is no analogy with k-anonymity in
the sense that n records have to share the same quasi-identifier, or that n
records should share the same sensitive attributes.

However, the amount of privacy still depends on many factors. If all
(or most) leaves of a generalization tree are equally privacy-intruding to an
individual, generalizing the data item does not reduce the privacy sensitiv-
ity. For example, if breast cancer, cervical cancer and lung cancer are the only
possible specializations of the generalized data item cancer, an attacker can
only be 33% confident of the correct type of cancer a victim has. However,
when the attacker has background knowledge, and because of that knows
the victim is male, he can be 100% confident that the victim has lung can-
cer. Hence, generalization trees (taxonomies) should be diverse enough to
indeed make data items less privacy-sensitive thanks to data degradation.

Finally, the limited risk for privacy because of the use of limited reten-
tion techniques is mostly caused by the fact that the quantity of the data
which possibly can be disclosed is reduced. In chapter 3 we will take the
retention period, which determines the size of a data set assuming constant
insert rates, as the base measure for privacy risk.

Usability metrics

It is not only difficult to measure privacy, it is also difficult to capture the
usability of data. Intuitively, it decreases when the precision of a data
item decreases. However, if the precision is not required for the purpose
for which a data item is being used, the usability will not decrease after
generalization. On the other hand, when the purpose cannot be fulfilled
since the purpose requires full precision, all usability will be gone after
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generalization. Therefore, most metrics are based on the principle that a
purpose can still partly be fulfilled with less precise data. For example, the
precision metric used by Sweeney [84] for k-anonymity to capture usability
uses the level of generalization (h) of a certain attribute value, relative to
the total number of levels in the domain generalization hierarchy (|dgh|) for
that attribute. More precisely: given an original table P and an anonym-
ized version R with |R| = |P| rows, quasi-identifier QI = A1, . . . ,An, and the
domain generalization hierarchy dghi for attribute Ai, the precision metric
Prec is defined as follows:

Prec(R) = 1−

n∑
i=1

|R|∑
j=1

hi,j

|dghi| − 1

|R| ×n
(2.1)

A value of attribute i in row j is not generalized when hi,j = 0, and is thus
in the first level of its generalization hierarchy. Hence, when each hi,j = 0,
and thus no quasi-identifiers have been generalized, the precision is one.
When each hi,j = |dghi| − 1, and thus all quasi-identifiers have been fully
generalized, the precision is zero.

Such a metric takes the distortion of the data due to each generalization
step into account, but not the amount of distortion per generalization step.
This amount of distortion can be measured using the number of values in
the domain of a generalized value compared to the size of the domain of
the not generalized value. This is used in a precision metric introduced by
Xiao et al. [96, 97], where count(h,dgh) gives the number of possible values
at level h in the domain generalization hierarchy dgh:

Prec′(R) =

n∑
i=1

|R|∑
j=1

count(hi,j,dghi)

count(0,dghi)

|R| ×n
(2.2)

When all attributes in the quasi-identifier of all tuples have been general-
ized to the highest level in the tree, the precision of the anonymized table
will be close to zero, when the domain is large. When no attributes have
been generalized, the precision is exactly one. Metric Prec′ (equation 2.2)
can be interpreted as follows. Imagine that there are ten research groups,
each group containing ten researchers. Hence, there are 100 different re-
searchers, so that count(0,dgh) = 100 and count(1,dgh) = 10. When, after
generalization, a researcher is represented by its research group, the usabil-
ity of that piece of information has been decreased to 10

100 = 0.1. Hence, the
metric is the sum of individual probabilities that the original value can be
correctly guessed. Note that not all attributes might be equal in terms of the
amount of usability it carries. Therefore, equation 2.2 can be extended with
a weight factor assigned to each attribute (equation 2.1 can be extended in
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a similar fashion):

Prec′weighted(R) =

n∑
i=1

|R|∑
j=1

count(hi,j,dghi)

count(0,dghi)
×wi

|R| ×
n∑
i

wi

Now, guessing the correct value of the ith attribute is rewarded with a
weight wi. Note that this metric does not take into account that intermediate
values could also be guessed. For example, research group can be further
generalized so that it reaches the root of the domain generalization hierarchy.
After this generalization step, the precision of such a data item is 1

100 ×w
(with a total of 100 researchers). In earlier work, we proposed a refinement
of this metric [91]. This refinement of the metric also assigns a weight
w′ < w for guessing the correct research group, of which the probability is
1

10 . Then, the precision of this fully generalized data item would become
1

10 ×w′ + 1
100 ×w.

Data degradation can use the same approach to measure the precision of the
data set as used by anonymization techniques. Instead of measuring the
distortion in the quasi-identifier, the distortion of the sensitive attribute
will then be measured. Still, providing a suitable metric which is able to
take all relevant aspects of data degradation into account is left for future
work.

2.4 Conclusion

Recall the following starting points:
• Our objective is to limit the impact of unauthorized data disclosure.

• The threat model assumes that unauthorized data disclosure cannot
be completely prevented.

• The failure of existing techniques to meet our objective make that
limiting the retention period of sensitive data is necessary. Although
access control and other security techniques can lower the probability
of unauthorized disclosure, they cannot fully prevent it. Anonymiz-
ation can be used to publish a data set in a privacy preserving way,
but does not provide any protection when data is disclosed in an
unauthorized way. Moreover, after anonymizing a data set, this data
set cannot be used anymore for personalized services.

• Limited retention lowers the impact of unauthorized disclosure. How-
ever, the principle is too rigorous to find a good balance between
privacy and data usability. To provide privacy, data will be fully des-
troyed when the retention period has ended. As a result, retention

34



2.4. Conclusion

periods are overstated to serve long lasting purposes, even if highly
precise data is not required for those purposes. Data degradation can
overcome this lack of balance between privacy and usability.

The objective of this thesis is to explore limited retention, and data degrad-
ation as a derivative of limited retention, as a new way to solve the problem
sketched in above observations. This leads to the four research questions as
described in Section 1.1, namely:

1. How to model the interest of both service provider and user, to find
the best retention period of privacy-sensitive data?

2. How to refine the limited retention principle, to better balance the
interests of service provider and user?

3. What is the impact of data degradation on traditional database sys-
tems, and is it feasible to implement the technique?

4. How can the concept of data degradation be further exploited when
the simplifications are released?

The following chapters will answer those questions.
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3Limited retention and degradation
model

The limited retention principle states that privacy-sensitive information
should not longer be stored than necessary to fulfill the purpose for which
the information has been collected. As we have argued in the previous
chapter, some services do not have a purpose which is clearly bounded in
time. When, for example, is the purpose ‘improve search results’ fulfilled,
such that information should be removed from the query log? In such cases,
service providers will store data as long as possible, which in practice can
be infinitely long.

We argued before that storing data infinitely long leads to severe privacy
risks. To limit the risks of data retention, the retention period should be
limited. The problem is that service providers can easily solely determine
the retention period, not taking the privacy risks, and thus the users, into
account. This is partly due to the lack of a framework in which it is possible
for users and service providers to reason about the retention periods, on
equal footing.

In the following we present such a framework. The aim is to model
the interests of both service provider and users, and bring those interests
together in what we name the common interest. This makes it possible
to reason about retention periods such that an optimal retention can be
chosen.

Moreover, we introduce the concept of data degradation, which is a
refinement of limited retention. Limited retention means that there is
one single retention period, after which a collected data item should be
removed; with data degradation, data is gradually removed. With each
step, the precision of the data will be decreased, and be made less privacy-
sensitive. In particular cases, under well-defined assumptions, it is possible
to achieve a higher common interest for both service provider and users.

The organization of this chapter is as follows. First we introduce our
framework in which it is possible to reason about limited retention. We
model the interest of service provider and user, and show how to derive
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an optimal retention period. Secondly, we refine the framework to incor-
porate the concept of data degradation, and show examples in which data
degradation leads to a higher common interest, and gives rise to the re-
search objectives of the remainder of this thesis. Finally, we give a more
in-depth definition of data degradation and the underlying concepts. Those
concepts will be used throughout this thesis. In chapter 6 we will propose
extensions to this model, and provide an outlook to how the concept of data
degradation can be used in practice.

3.1 Limited retention

3.1.1 Finding limited retention periods

To let the reader get familiar with our notations and reasoning, we introduce
our concepts for the limited retention principle here. In the next section
we will reuse and extend those concepts when we refine limited retention
to data degradation. Our goal is a qualitative framework which makes
it possible to reason about retention periods. We model the interest of a
service provider and, separately, the interest of the user in a way that is as
simple as possible; a more elaborate model is left for future work. Then
we combine these to a common interest, from which an optimal retention
period can be derived. We make no quantitative statements about how
exactly these interests will be expressed in practice; again, the practical
implementation is beyond the scope of this thesis.

3.1.2 Preliminaries

In the sequel, we consider only one user, which we refer to as ‘the user’.
Considering more users is no problem but would lead to the same result
if we treat them on equal footing. Also, we shall not make a distinction
between different kinds of data: we treat all data on equal footing.

The history of which data item is inserted into the store at which time,
is called H; it is a set of pairs of a data item and its insertion time in the
store. For example:

H = {(d,b), . . . , (d′ ,b′)}

We take H as a constant, we let d range over the set of data and t over the set
of time points, and use letter b (birth) for ‘the insertion time of a data item
into the store’. We useN to measure an age, i.e., length of a time interval,
and let a,δ range over ages. A simplifying assumption is that the insert
rate of data is constant over time; that is, there exists a constant c such that
during each interval of length a the amount of data inserted into the store
is c× a:

∀t,a • #{(d,b) : H | t ≤ b < t + a} = c× a (3.1)
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3.1. Limited retention

By its definition, limited retention bounds the interval during which a data
item is stored by a fixed retention period δ. Hence, the store at time t depends
on δ and is expressed as follows:

store(δ, t) = {(d,b) : H | b ≤ t < b + δ}

3.1.3 Service provider’s interest

We use the term worth to indicate the monetary worth—although we will
not concretely speak in terms of money—or business value of a data item for
the service provider. We use worth as a technical term to prevent ambiguity
of the term value, which in the context of this thesis means the alphanumeric
object denoted by an algebraic term, for example, the value of d is ‘Enschede’.

In practice, the worth of a data item for the service provider depends on
multiple factors, such as the actual content of the data item, the context in
which the data item has been acquired, the user from which the data item
has been acquired, time of day, and possibly many other factors depending
on the type of use. Our model does not limit the possibility to include those
parameters; however, for the sake of simplicity we omit them. Thus, we
assume that for the service provider the worth at time t of a data item with
birth b depends only on the data item’s age t−b:

worth((d,b), t) = wt(t−b)

where wt(a) is non-negative, monotonic descending in a

The auxiliary function wt is monotonic descending since older data is
assumed to be less valuable for the service provider. Figure 3.1 gives the
typical shape of function wt(a).

The assumption that older data is less valuable is necessary in the
context of limited retention. If the worth of the data would increase over
time, limited retention would severely impact the benefit of collecting data
in the first place. Hence, either the data will be stored for a long period
without limited retention restrictions (with all privacy risks), or not stored
at all. To limit the privacy risk in such a scenario, access control techniques
can block access to the data items, and release the data items after some
time to restrain the ‘actual’ retention period. However, such a solution does
not provide any protection against our threat model (see section 2.2).

The service provider wants, at each point t in time, to maximize the total
worth of the data in the store:

totworth(δ, t)
= definition∑

(d,b):store(δ,t) worth((d,b), t)
=
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3. Limited retention and degradation model∑
(d,b):store(δ,t) wt(t− b)

=


A stored data item of age a contributes
wt(a) to the sum. Thanks to the constant
insertion rate c, the number of stored data
items of age a is the same (namely c) for
each a = 0, . . . ,δ.

c× (wt(0) + wt(1) + · · ·+ wt(δ))
=

c×
∑

a=0...δwt(a)

It turns out that totworth(δ,t) does not depend on t, hence we omit para-
meter t and simply write totworth(δ). Figure 3.1 gives the typical shape of
function totworth(δ). Without other constraints, the service provider would
achieve his goal by setting δ to infinity.

3.1.4 User’s interest

For the user it is risky to have data stored at the service provider: in
some way or another (hackers’ attacks, for instance) the data might be
disclosed. We assume that the harm for the user of a disclosure of his data
is proportional to the amount of data. Below, we take the risk equal to the
amount of data since this simplifies the formulas and nevertheless gives the
same results. Again, there are multiple other factors which influence the
risk of storing a data item. For example, the fact that a user searched for
hiv is more risky than a search for flowers. Also, we assume that disclosure
of old data is as harmful as disclosure of recent data. Our model does not
restrict the possibility to take those factors into account, but we leave this
for future work. Thus we define and simplify risk as follows:

risk(δ, t)
= definition

#{(d,b) : store(δ, t)}
=

#{(d,b) : H | b ≤ t < b + δ}
= constant insert rate (3.1)

c× δ

So, risk(δ, t) doesn’t depend on t and we simply write risk(δ).
The goal of the user is to minimize risk(δ). It is equivalent to maximize

the inverse: 1/risk(δ), which we call the privacy guarantee. It follows that
the privacy guarantee is infinite when there is no data in the store, δ = 0
(and goes down to zero when retention is unlimited, δ = ∞). To escape
mathematical problems (division by zero) and come to a slightly more
realistic model of privacy, we apply a smoothing technique so that privacy
cannot be infinite: add a constant to the denominator of 1/risk(δ). The
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3.2. The concept of data degradation

smoothing constant s may have a reasonable interpretation; for example, the
fact that there is no data in the store, might be interpreted as an indication
that “the user has something to hide” and so his privacy guarantee is not
infinite [39]. Thus our definition reads:

priv(δ) =
1

s + risk(δ)
=

1
s + c×δ

Figure 3.1 gives the typical shape of function priv(δ). The user wants to
maximize priv(δ), which without further constraints is achieved by taking δ
as small as possible.

3.1.5 Common interest

Above we defined the interests of both service provider and user. Those
interests are conflicting; whereas the service provider benefits most when
δ is large, the user aims for a δ as small as possible. We want a concept
of common interest which both parties can agree upon. We expect that the
common interest leads to a retention period which is both limited (δ <∞)
and non-zero (δ > 0).

To define the common interest CI(δ), we require two things. First, CI(δ)
is proportional to the service provider’s goal function totworth(δ) when the
user’s interest is viewed as constant. Second, CI(δ) is proportional to the
user’s goal function priv(δ) when the service provider’s interest is viewed as
constant. Since both goal functions are non-negative, a suitable function
CI(δ) is the product of these:

CI(δ) = totworth(δ)× priv(δ)

Figure 3.1 gives the typical shape of function CI(δ).
Since worth is monotonic descending and risk is (almost) proportional to

δ, it follows that CI(_) has a maximum, which it takes on argument δopt, say.
The existence of a maximum can be interpreted in the following way. By
setting the retention period smaller than δopt the user will gain more privacy,
but the common interest will be lower because the decrease in stored data
induces a greater loss of total worth for the service provider. Similarly, by
setting the retention period larger than δopt the service provider will gain
more total worth of the stored data, but the common interest will be lower
because of a larger decrease of the user’s privacy.

3.2 The concept of data degradation

Recall that the principle of limited retention tries to satisfy the service pro-
vider by allowing to store data for at least the retention period δ, and it tries
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Figure 3.1 The common interest function reaches its highest point at δopt meaning that
a retention period of δopt gives the best balance between totworth for the service provider
and priv for the user.

at the same time to satisfy the privacy concern of the user by ensuring that
the data is stored for at most the retention period δ (and the previous section
shows how to reason about the optimal retention period). The principle is a
crude all-or-nothing approach: a data item either exists completely in the
store or not at all. The principle of data degradation overcomes the all-or-
nothing approach by storing data in progressively less precise forms, so as
to make it less privacy-sensitive over time while still providing some worth
to the service provider. A well accepted form of data degradation is data
generalization. This technique is often used in k-anonymity research [85],
and is also applied in data mining and warehousing [51]. More about the
techniques we use to generalize data—based on domain hierarchies and
generalization trees—can be found in section 3.3.
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L2
δ3

L1
δ2

L0
δ1δ0

Figure 3.2 Graphical representation of a simple life-cycle. Edges denote transitions
between Levels of precision after a retention period δ.

3.2.1 Life-cycle policies

To formalize the data degradation principle, we need some terminology and
notation. First, we distinguish several levels of precision, say L0,L1, . . . ,Ln−1
in decreasing order of precision. Level L0 denotes level of highest precision.
Second, the degradation from Li−1 to Li is denoted τi (τ is mnemonic for
“transformation”). Third, the interval from the birth of a data item to its
degradation to Li is denoted δi; it follows that δ0 = 0 because a data item
is supposed to enter the store with level of highest precision, and we let
δn be the interval from birth to removal from the store. The notation ~δ
abbreviates the sequence δ1, . . . ,δn. Almost all this information is captured
in a so-called life-cycle, as illustrated in figure 3.2.

So, the store consists of data of age at most δn, and degraded to the
appropriate levels:

store(~δ, t) =

{(d,b):H | b+δ0 ≤ t < b+δ1 • (d,b,L0)}
∪ {(d,b):H | b+δ1 ≤ t < b+δ2 • (τ1(d),b,L1)}

...

∪ {(d,b):H | b+δn−1 ≤ t < b+δn • (τn−1(d),b,Ln−1)}

The product of our framework is a life-cycle policy, which captures how
and when data needs to be degraded, and with which the service provider
has to comply. As long as the service provider is honest, the life-cycle policy
ensures that if the data store is attacked, the impact of disclosure will
be less severe; only a small subset of the data will be stored in a precise
form, the rest will be either degraded or destroyed. Some of the technical
challenges related to the implementation and enforcement of such policies
on traditional database systems are discussed in section 4.

3.2.2 Interests revised

We assume that degraded data is less worthwhile for the service provider
but also less risky for the user to store, and we will revise the definitions of
worth and risk accordingly. The definitions of the total worth, privacy, and
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common interest in terms of worth and risk remain the same except for the
replacement of δ by ~δ.

Worth and total worth

For the service provider, the worth of a data item depends not only on the
age “t−b” but also on the level of precision l:

worth((d,b, l), t) = wtl(t−b)

wtl(a) is non-negative, monotonic descending in a and l

The effect of degrading a data item to a level of lesser precision is that its
worth for the service provider is decreased. Indeed, ‘wtl(a) is monotonic
descending in l’ means that for all a:

wt0(a) ≥ wt1(a) ≥ . . . ≥ wtn−1(a)

As before, the total worth of the store at time t is the aggregation of the
worth of all data in the store:

totworth(~δ, t)
= definition∑

(d,b,l):store(~δ,t) worth((d,b, l), t)
=

c× (

wt0(δ0) + wt0(δ0+1) + . . .+ wt0(δ1 − 1) +

wt1(δ1) + wt1(δ1+1) + . . .+ wt1(δ2 − 1) +

. . .

wtn−1(δn−1) + wtn−1(δn−1+1) + . . .+ wtn−1(δn − 1) )
=

c×
∑n−1

l=0
∑δl+1−1

a=δl
wtl(a)

It follows that totworth(~δ, t) is independent of t, and we can simply write
totworth(~δ). Note that the contribution to totworth(~δ) of the most degraded
level may be negligible in comparison to the less degraded levels: both the
age and the level are higher.

Risk and privacy

The risk of having data in the store was proportional to the amount of data
in the store. However, with data degradation, the assumption is that storing
data in a more degraded level is less risky than for a more precise level.
To express this, we weight the risk of storing a data item in level Ll with a
factor rl such that 1 = r0 ≥ r1 ≥ . . . ≥ rn−1. Hence, the definition reads:

risk(~δ, t)
= definition
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3.2. The concept of data degradation∑n−1
l=0 rl ×#{(d,b, l′) : store(~δ, t) | l′ = l}

=
c×

∑n−1
l=0 rl × (δl+1 − δl)

Again, risk(~δ, t) is independent of t and we simply write risk(~δ). The defini-
tion of privacy doesn’t change:

priv(~δ) = 1 / (s + risk(~δ))

Common interest

The common goal of both service provider and user remains the same:
optimizing the common interest. Except for the replacement of δ by ~δ there
is no change in the formalization:

CI(~δ) = totworth(~δ)× priv(~δ)

Note that if there is just one level of precision, n = 1, the newly defined
notions coincide with the already existing notions (such as CI(~δ) and CI(δ))
provided we take wt0(a) = wt(a) and δ1 = δn = δ.

3.2.3 Benefits of data degradation

The aim of data degradation is not to provide more privacy while ensuring
the same amount of worth for the service provider, nor providing more
worth while ensuring the same amount of privacy as what can be achieved
with limited retention. Instead, we want to show that we can achieve a
higher common interest with data degradation than with limited retention.

Since the contributions of δ2,δ3, . . . to CI are non-negative, data degrad-
ation with n > 1 will outperform limited retention:

∀δ1,δ2, . . . • CI(δ1) ≤ CI(δ1, . . . ,δn)

In the following we will show, using experimental examples, that for some
set of examples which all comply with our assumptions the common interest
will be higher when we use data degradation. Hence, our target is to give
insights in what we can gain by choosing data degradation in comparison
to limited retention.

Analysis

We use Matlab as the platform for our analysis. We implemented a set of
worth and privacy functions which simulate the functions which have a
practical shape, complying with the assumptions in section 3.1.1. Given
those functions, we let Matlab optimize the common interest considering
n = 1 . . .4 possible degradation steps. Hence, choosing n = 1 means the same
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as applying limited retention, whereas choosing n > 1 means we allow one
or more degradation steps.

Although we can easily experiment with different types of worth func-
tions to simulate a service provider’s worth function—as long as they are
monotonic descending—we choose the cosine function, as in figure 3.3.

In the worth functions we use weights w1 ≥ w2 ≥ . . . ≥ wn. Recall that ri
are weight factors in the risk function. We choose w1 = r1 = 1 and w2 . . .wn
vary over 0 . . .1, similarly for ri.

Increased common interest

To show that using data degradation indeed can result in a higher common
interest, we let our script find the ~δ for which the common interest is
maximal, with at most n = 4 degradation steps. We choose the following
parameters:

i = 1 2 3 4
wi 1 0.3 0.2 0.1
ri 1 0.2 0.1 0.05
s = 18

With those parameters, we obtain the following results (also shown in
figure 3.4).

n = 1 2 3 4
~δ [53] [26,81] [16,46,96] [16,46,96,96]
CI(~δ) 0.7948 0.8358 0.8532 0.8532
totworth(~δ) 98.5582 76.8960 61.4329 61.4329
priv(~δ) 0.0081 0.0109 0.0139 0.0139

From this result we conclude for the chosen parameters:
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Figure 3.4 Common interest function for n = 1 (limited retention) and n = 2. For n = 2,
we only vary over δ2; the first retention period δ1 is chosen such that CI(δ1,δ2) is optimal
for the δ2 where this plot reaches its highest point. One can observe that δ1 for n = 2 is
shorter than the optimal δ1 when n = 1, and that the common interest for n = 2 is higher
than for n = 1.

1. Common interests is higher when progressively degrading (n > 1)
the data than with limited retention (n = 1) of precise data.

2. With n > 1, δ1 is smaller than the single δ with n = 1. It thus makes
sense to degrade the data earlier to achieve a higher common interest.

3. When n = 4, it turns out that δ3 = δ4, meaning that it is not possible to
achieve a higher common interest with more than three degradation
steps.

A closer look on weights and their effect on the common interest

We already have seen that data degradation can result in a higher com-
mon interest. An interesting question is how the ratios between weights
w1 . . .wn and r1 . . .rn assigned to each level of precision Li influence the gain
in common interest which can be achieved with data degradation. Our
expectation is the following: with wi > ri, degradation results in a higher
common interest compared to limited retention.

For this experiment we choose arbitrarily r1=1,r2=0.2,r3=0.1,r4=0.05,
and vary over wi. We use a simple distance metric: dist(~w) =

∑n
i=2 w1 −wi to

express the drop in worth when degrading the data. Note that the smaller
wi is, the less worth is preserved on that precision level.

Figure 3.5 shows for various weights wi the ratio between the common
interest which can be achieved with only limited retention and the com-
mon interest which can be achieved by at most n = 4 degradation steps.
Figure 3.5b shows only common interest points achieved with at least 3
degradation steps. The ratio indicates the fraction of common interest
possible with limited retention compared to that of data degradation; it
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Figure 3.5 Ratio between the common interest which can be achieved with only limited
retention and the common interest which can be achieved by allowing n = 4 degradation
steps. A ratio equal to 1 means no increase in common interest, lower than 1 indicates that
limited retention performs less than data degradation. This ratio can never be higher than 1;
limited retention cannot perform better than data degradation.

cannot be higher than 1 since limited retention can never perform better
than data degradation (see earlier this section).

We make the following observations:
1. When dist(~w) ' dist(~r) ' 2.65, the decrease in worth is similar to the

increase in privacy, so that common interest hardly increases (CI ratio
is close to 1).

2. When the decrease in worth becomes higher, data degradation hardly
outperforms limited retention.

3. Most gain in common interest is achieved by applying one-step de-
gradation: data is immediately degraded to a higher level, and fully
degraded afterward. This can be concluded from figure 3.5b, in which
only multi-step degradation is allowed. All combinations with multiple
degradation steps lead to a ratio between 0.86 and 1, where all pos-
sible configurations (including one-step degradation) lead to a ratio
between 0.15 and 1.

From the last observation, we conclude that for some (our current) para-
meter values it makes sense to generalize the data before storing it. In
other words, a higher common interest can be achieved by sacrificing some
precision to get much more privacy in return, especially when the privacy
increase is much higher than the loss in worth. When the decrease in worth
is more close to the increase in privacy, we showed again that multi-step
degradation leads to an increase in common interest.
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3.3 Data hierarchies and generalization trees

In the following we will go more into detail about how the data can be
degraded from level to level. We introduce the concept of transformation
functions, and give two particular realizations of those functions: gener-
alization trees and generalization functions. We will discuss with which
properties the transformation functions should comply.

3.3.1 Transformation functions

In section 3.2 we already introduced the concept of Levels of precision.
From now on we consider a partially ordered set of levels of precision
(Level,�,full,null), and transformation functions between these levels of
precision. This is defined as follows:

Level A level of precision, denoted as α,β,γ ,. . .. In figure 3.2,
α = L0, β = L1, and γ = L2.

� A binary relation describing, for two levels in the set, the
requirement that one of the levels must precede the other
(if there is a relation between the two levels).

full The most precise Level, so that full � α for any α.
null The least precise Level, so that α � null for any α.

Hence, there is always a path from the most precise level full to the least
precise null. In our particular realization, a level represents a set of attrib-
utes and its accuracies, and null represents final destruction of all attributes.
In this representation, α � β has the meaning that all attributes of α have a
higher or equal precision than those of β.

For each α � β we require a transformation function:

Valα ,Valβ The sets of values at level α and β.
τα→β : Valα→ Valβ A function to transform an item from level α

to β, where α � β.
(3.2)

To be able to comply with the limited retention property, we have to put
restrictions on the levels which can be reached through transformation
functions, and the transformation functions themselves. Hence, it must be
possible to transform data to a level from any level below that level in the
partial ordering. Moreover, if there is path from α to β, and from β to γ , it
must be possible to directly transform data from α to γ :

τα→γ = τβ→γ ◦ τα→β For each α � β � γ (3.3)
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full α β nullτfull→α τα→β τβ→null

Figure 3.6 Simplified network of Level of precision, whit only a single path from full to null .

Restrictions 3.2 and 3.3 are only required to make sure the model can be
implemented using limited retention; to be able to implement a transform-
ation function, it is not needed to keep a copy of the original, precise data.

Transformations only triggered by time

Above, we implicitly made the simplification that degradation is triggered
by time. This is a reasonable simplification, since the expiration of a time
period is unavoidable, and therefore gives users the guarantee that their
personal information indeed will be degraded. Especially when purposes
are not clearly circumscribed, and thus do not have clear end-time, time-
triggered data degradation is desirable.

Thanks to this simplification, the life-cycle of any data item is fixed;
the path from null to full does not have branches. An example is given in
figure 3.6. Requirement 3.3 is automatically fulfilled: τfull→β = τfull→α ◦
τα→β ; if it is possible to degrade from full to α, and from α to β, it is also
possible to degrade from full to β.

We use this simplification in chapter 4, where we discuss the technical
impacts of the degradation model on relation database systems.

Transformations triggered by any type of event

The data degradation model itself does not put a restriction on the type of
events which trigger a transformation function and a transition between
levels of precision. Hence, an event can be anything; apart from events such
as ‘the end of the retention period’, it can also be ‘the purpose of using the
information has been fulfilled’. The latter cannot, in general, be expressed
in the age of data.

Different events can trigger different transformation functions on the
same data item. This makes that the life-cycle of data item is not fixed,
as it is in the simplified version of the model, where transitions are only
triggered by time. Different paths from full to null are possible, which is
pictured in figure 3.7.

For two arbitrary levels, we require that there also exists a level which
represents the so-called meet (u) between the two:

α � β uγ ≡ α � β ∧α � γ (3.4)
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full
111

α
112

β
121

γ
212

ε
132

nullτfull→α

τα→γ

Figure 3.7 Particular example of a valid network of levels without the simplifying as-
sumption that transitions are triggered by time. The edges represent the existence of a
transformation function. A level is represented by a set of digits, each digit representing a
level of precision of an attribute. Here, 111 denotes a tuple with three attributes all in the
most precise state. State 132 means that the first attribute is still precise (1), the second
attribute has been transformed to state 3, and the third attribute is in state 2. In this example,
α = γ u ε = 212u 132 = 112.

In our particular implementation, the meet of two levels can be calculated
by taking for each pair of attributes of two levels, the most precise attribute
of the pair. Hence, given two arbitrary levels, we require there is a path
leading to both levels from a shared root. Note that this requirement is
always fulfilled if we require the existence of a level full, from which all
other levels can be reached.

The sets of levels and transformation functions as in figure 3.8 are not
possible. If figure 3.8a would be allowed, it would be possible to upgrade
the precision of an attribute. such a operation is only possible when the
original value is stored, which is against the limited retention principle.
The situation in figure 3.8b can occur when the collected, most precise data
has a precision from which there is no transformation to some of the levels.

3.3.2 Generalization functions and trees

Transformation functions have the task to degrade data from one level
of precision to the other. A particular implementation of transformation
functions can be generalization, a well-known technique also used in an-
onymization techniques, as we have seen in section 2.3.2. We shortly discuss
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a Invalid, because a transformation function τα→γ is
not possible, since α does not precede γ . To be a
valid Level , α � γ u ε, which is not the case
(requirement 3.4).
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b Invalid, because level β is not reachable
(requirement 3.2) through a transformation function. A
transformation between full and β is not possible
(requirement 3.4).

Figure 3.8 Two invalid sets of levels and transformation functions, where the level repres-
entation of figure 3.7 is used again. Figure a) invalidates the limited retention principle. It
would be possible to provide this functionality using access control techniques. Figure b)
contains levels which are unreachable, because the most precise data is incompatible with
level β.

two generalization techniques; generalization trees—also known as general-
ization taxonomies—and generalization functions.

For simplicity we choose here to use a crisp generalization tree, although
techniques for fuzzy generalization hierarchies exist and could be applicable
to our degradation model [13]. In this context, crisp means that each data
item can only be generalized in one single way. Moreover, we assume that
generalization functions and trees match service provider’s requirements.
Hence, the levels of precision are meaningful for the service provider in
such a way that it can still fulfill some, or all of its purposes on degraded
data.

Some transformation functions can degrade a value by applying an
operation on that value without requiring any auxiliary information. For
example, a zip-code can be easily degraded by removing a digit, such as
in figure 3.9. A time stamp can be degraded by removing, for example,
the day. Using a function, a time stamp can be degraded to ‘the day of the
week’. Numerical values, such as salary, can be degraded by splitting the
domain in intervals of arbitrary size, or rounding the number to thousands.

When the degradation of a piece of information (typically an attribute)
cannot be captured by a generalization function, a generalization tree can be
used. Given the domain generalization hierarchy for an attribute, a generaliz-
ation tree for that attribute gives, at various levels of precision, the values
that the attribute can take during its lifetime. For each domain in the do-
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zip
code

90210

section9021*

region902**

state9****

a zip code

street Mulholland Drv

city Los Angeles

region California

country U.S.A.

b address

Figure 3.9 Two arbitrary domain generalization hierarchies for zip-code and address. Val-
ues of the first domain can be generalized using a generalization function, which simply
removes digits from the code. This is not possible for address; for this domain, a generaliza-
tion tree as in figure 3.10 can be used.

main generalization hierarchy, the corresponding level in the tree contains
all possible values of that domain. Hence, a path from a particular node
to the root of the tree expresses all degraded forms the value of that node
can take in its domain. An example is given in figure 3.10; here a possible
generalization tree for the domain generalization hierarchy of figure 3.9b is
shown.

The disadvantage of a generalization tree over a generalization func-
tion is that such a generalization tree might not always be easily available.
Moreover, for large domains, especially the most precise level of the gen-
eralization tree can be large. For example, there are roughly 200 million
internet domain names; the number of individual web pages is even much
larger. To implement and maintain a generalization tree capturing all those
domain names and their categories might not be an easy task, although
so-called web directories already exist today, such as Google Directory
(containing 1.5 million websites) and Yahoo Directory [106, 126].

The advantage of a generalization tree is that it is flexible; a general-
ization tree can reflect exactly application needs. Every level in the tree
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∅

U.S.A.

New York

New York City

Broadway ... 3th avenue

...

... California

Los Angeles

... Sunset Blv Mulholland Drv

San Diego

France

Ile de France

... Versailles

... Av. de l’Europe

Paris

R. de Rivoli

...

Figure 3.10 Example of a generalization tree for the location attribute. The leafs of the
tree denote the most precise values (addresses).

can be defined such that the precision makes sense for the application. For
example, if a service wants to provide suggestions based on a city, it does
not make sense to degrade a location to ‘road type’.
For some domains, a hybrid solution using both generalization functions
and trees can be used. For example, an address containing a zip-code can
first be generalized using a function which removes digit(s) to generalize
the location information. For the least precise location, or for specific applic-
ations requiring a different generalization scheme than already contained
in the zip-code hierarchy itself, a generalization tree can be used.

3.4 Conclusion

In this chapter, we presented a new framework to be able to reason about
limited retention, and more specifically data degradation. We showed that
using a function capturing the worth of storing data for the service provider,
and a function for the risk of storing this data, there exists an optimal
retention period such that the common interest for both service provider
and user is maximized.

The increase of common interest which can be achieved depends on
multiple factors. When the decrease of worth is much higher than the
increase in privacy, it is good to apply data degradation, even if this means
that the data will never be stored in a precise form. In our analysis, we
showed cases where it is useful to progressively degrade the data from
precise states to generalized states until final destruction of the data. Still,
there are open questions, which fall beyond the scope of this thesis, but
have to be considered in future work.

• Firstly, as mentioned earlier in section 2.3.3, it is hard to measure
the actual privacy guarantee of data degradation and its effect on the
risk functions. How much ‘privacy’ can be provided by generalizing
the data is an important question in order to correctly define the
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risk functions. Correctly defining privacy will always be subject of
discussion, mainly because of its subjective nature. In that light,
defining privacy as a function based on risk, and to relate this risk to
the amount of stored data is a promising first step.

• We introduced a model in which we only take retention periods of
data into account. Indeed, both privacy and worth functions can
depend on various parameters other than retention periods. Users can
choose different ‘risk profiles’ depending on the nature of the data
items, and service providers can attach a lower worth to specific data
based on the user, location, time of the day, et cetera.

• For practical reasons, an important question is if and how service
providers will be able to express their worth functions. To put our
framework into practice, it is necessary to provide tools which enable
service providers to give transparency about their need to collect
personal data.

Our framework shows it is indeed possible to reason about retention peri-
ods such that not only one but both parties will be satisfied. However, the
resulting life-cycle policies have to be enforced such that data indeed is sub-
ject to data degradation, which is a task for the service provider. This leads
to the important question if it is feasible to implement data degradation. In
the following two chapters, we will discuss the technical problems relating
to implementing life-cycle policies in a relational database system.
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4Technical implications of data
degradation

In section 3.2 we introduced the concept of data degradation. We omitted
most details about the context in which such a model should run. In this
chapter we will place our model explicitly in the context of a traditional
database management systems; we introduce concepts and definitions that
particularly apply to relational data management. In this context, the
data items will be attribute values contained in tuples, which are stored in
relational tables. When we refer to traditional database systems, we refer to
mainstream database systems which do not implement data degradation.

Traditional database systems are developed to efficiently and durably in-
sert data, make updates to this data and to query them. The acid properties
ensure the correct execution of queries and updates keep the database in a
consistent state. Although the acid properties—which stands for atomicity,
consistency, isolation and durability—ensure that the database will internally
be in a correct state, operations on the data can be performed beyond the
control of the dbms, and then violate the acid properties. For example, it is
possible to corrupt the data files or destroy transaction logs, violating the
durability property.

The consequences of such a violation will be highly dependent on the
application of the dbms; in our context of data degradation, the dbms will
be responsible to make data degradation irreversible. Thus, to apply the
degradation model, we have to ensure that even operations performed
outside the control of the dbms cannot reverse the degradation steps; a delete
statement should not only be made visible on the application level, but
also externally irreversible. In current database system implementations
this is not the case, as pointed out by Miklau et al. [71]. They showed that
although data has been deleted from a logical point of view, for example by
setting a deletion flag, the deleted data can still be recovered from the file
system.

Hence, an important question will be how and to which extent the
kernel of a traditional dbms has to be adapted to get our degradation model
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running. The question to be answered in this and the following chapter will
be how feasible it is to implement the data degradation model, possibly on
top of an existing dbms, and to analyze the impact of data degradation on
the performance of the dbms. In this chapter we propose various strategies
to efficiently store and query degradable data. We will describe those
strategies in detail in the following sections. Those strategies have been
implemented in a prototype. An extensive analysis of the performance will
be presented in chapter 5.

4.1 The degradation model for relational data

In section 3.2 we introduced life-cycles as a sequence of levels of precision in
decreasing order of precision, and the retention period for each level. In this
section we give more details about what this means for tuples containing
individual attributes which have to be degraded. What we previously called
a data item will now be referred to as an attribute value; hence, attributes are
the entities which will be degraded and undergo transformations to new
levels of precision.

4.1.1 Simplifications

Although the model presented in chapter 3 does not put the following
simplification, we introduce them here to simplify the discussion on the
technical feasibility of data degradation. The techniques presented further
on in this chapter benefit from the simplicities. We will, where applic-
able, indicate to which extent the techniques rely on the simplifications
introduced here.

TIME TRIGGERED Transformation functions are triggered by time, as proposed
in section 3.2. An alternative would be that transformation functions
are triggered by any type of events, which will be discussed in more
detail in chapter 6.

UNIFORMITY Life-cycles apply to all tuples of the same table uniformly, rather
than being user dependent. Hence, for each type of attribute there
can be only one life-cycle.

4.1.2 The life-cycle of an attribute

A life-cycle for an attribute is a sequence of attribute states; an attribute state
represents the level of precision of that attribute. The life-cycle consists
of transformation functions triggered after pre-defined retention periods.
More precisely:
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∅A2
∆3

A1
∆2

A0
∆1

b

δ1

δ2

δ3

Figure 4.1 Example of the life-cycle of an attribute with 4 attribute states. Duration ∆1 is
the duration of state A0, and should be read as “after being ∆1 in state A0, attribute A will
be degraded to state A1”.

• In the initial state of a degradable attribute A, denoted by A0, the
attribute has its original value as acquired at its time of birth (insertion
time).

• A transformation τi from Ai−1 to Ai takes place after a retention period
δi since time of birth b, with δ0 = 0, meaning that an attribute imme-
diately enters its first state after insertion. Note: τi is a shorthand for
τAi−1→Ai .

• The final state of an attribute’s life-cycle containing n states, An−1,
will be referred to with the symbol ∅, indicating the final destruction
of that attribute.

• The period between τi and τi−1, denoted by ∆i is named the attribute
state duration, with ∆0 = 0. Hence, δi =

∑i
j=0∆j. Note that ∆i is the

duration of the state preceding attribute state i.
A life-cycle is defined per degradable attribute. An example of a life-cycle is
given in figure 4.1. In this figure, the life-cycle consists of 3 attribute states
before the attribute is finally destroyed. The total life time of the attribute is
therefore δ3 (assuming the absence of explicit delete statements by users).
If there doesn’t exist a life-cycle for an attribute, this attribute is considered
as a stable attribute.

4.1.3 Tuples

Tuples, as in traditional relational database, consist of a set of attributes
{A,B,C, . . .}. In our model, a tuple is the composition of degradable attributes
and stable attributes. Stable attributes do not participate in the degradation
process. Each degradable attribute however has its own life-cycle; when a
transformation takes place in one of its degradable attributes, the tuple as a
whole enters a new state. We name such a state a tuple state. More precisely:

• The initial state of a tuple t, denoted by t0, is defined as the state in
which all degradable attributes are in their initial state 0.
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δ1
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Figure 4.2 Representation of the life-cycle of a tuple with stable attribute S and degradable
attributes A and B. The initial state is t0. After ∆0, attribute B will undergo a transformation
to attribute state B1, such that the new tuple state will be t1. The life-cycle ends when both
attributes are in their final state.

• The tuple state ti is the composition of attribute states; given the
attribute states Aa,Bb,Cc, . . ., the tuple state number i is defined as
i = a + b + c. Hence, an attribute transition from Aa to Aa+1 results in a
tuple state transition from ti to ti+1.

• The duration of a tuple state before the transformation to ti takes place
is denoted with ∆i. The retention period δi at which the transition
from ti−1 to ti takes places is determined as follows: if Aa,Bb,Cc, . . .
are the current attribute states for the attributes of tuple t, with
retention periods δa,δb,δc, . . ., then δi = min{δa+1,δb+1,δc+1, . . .}. Now,
∆i is defined as δi − δi−1.

• When the retention period of two attribute states Aa and Bb are equal
(δa = δb), the tuple will first undergo a transition from ti to ti+1,
immediately followed by a transition to ti+2 (∆i+1 = 0).

The concept of tuple states and how the life-cycle of a tuple is constructed
from its attribute life-cycles is pictured in figure 4.2.

4.1.4 Tuple state sets

During the life-cycle of a tuple, the tuple will be in different states of
precision, indicated by its tuple state. We name the set of tuples which, at a
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Figure 4.3 Visualization of tuple state sets, and the composition of the tuples belonging
to those sets from its different attribute states. The most recently inserted tuples will be
contained in tss0 while the eldest tuples will be contained in tss3. Note that attributes with
the same attribute state can be member of different tuple state sets.

given point in time, share the same tuple state a tuple state set, abbreviated
with tss. Hence, the database consists of a number of tuple state sets, equal
to the number of tuple states. The following properties hold for a tuple
state set:

• A tuple state set tssi contains only, and all tuples which are in tuple
state ti.

• At a tuple’s birth, the tuple will be inserted in tss0.

• A tuple will be removed from a tuple state set tssi at the age of δi, and
will become member of the set tssi+1, unless it reaches the end of its
life-cycle.

• Assuming a constant insert rate, the size of the tuple state sets remain
constant, since the tuple state durations are fixed. The size of a tuple
state set tssi is therefore determined by the tuple state duration ∆i
and the insertion rate.

Figure 4.3 visualizes the concept of tuple state sets. Note that the content
of the set is determined by the tuple state, not by the attribute state, and
therefore two different tuple state sets can contain tuples with an attribute
sharing the same attribute state.

4.1.5 Query semantics

Since each piece of data is no longer stored with full precision, but instead
with less precision after each degradation step, the semantics of querying
the database need revision. To this end, it seems natural to look for results
from fuzzy or probabilistic database theory, because less precise representa-
tions can be related to fuzzy or probabilistic representations. However, in
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terms of the fuzzy database landscape defined by Buckles and Petry [28],
we take the position that

i. the data inserted into to system is precise,

ii. the degraded representations are less precise but still certain, and

iii. the queries are crisp, meaning that results are supposed to be a correct
and complete response to the query [28].

Positions (i) and (iii) need no discussion; of course, other positions are
possible but will lead to a different research intention and direction. The
reason behind (iii) is that we want to change the sql query syntax (and
semantics) only as little as possible. However, although the results are crisp,
one can say that the probability with which a degraded result value can be
traced back to the originally inserted value, has been decreased.

To motivate our position (ii) we argue as follows. Fuzzy (uncertain) data
is, in terms of the fuzzy database model [70, 86], data to which a ‘truth
value’ in 0 . . .1 is attached, indicating the degree to which the data can be
considered possible. Since the original value is not fuzzy, the degraded value
cannot be considered fuzzy in a meaningful way: all more precise values
have a degree 0 or 1 (and nothing in between) of possibility of being ‘the’
original one. Only the precision has decreased.

To provide appropriate query semantics, we have to define to which
extent data at different levels of precision can be used to answer queries.
We identify two possible usages of degraded data: either a service can have
a single purpose, which can use data with several levels of precision, or
a service has multiple purposes, each purpose requiring its own level of
precision. Moreover, we recall the statement made in section 3.3.2, that
in the degradation model, the levels of precision match predefined service
requirements, captured by the levels in the generalization trees. Thus,
services know the levels of precisions and forms a data item can take,
as expressed by the generalization tree. Hence, a service with multiple
purposes, each requiring its own level of precision, wants its predicates
being evaluated only on the data with at least the precision they need to
answer a specific query. This leads to the following query semantics for,
specifically, the selection and projection.

For the sake of simplicity, we consider queries expressed over a single
relational table R. Due to degradation, the dataset R is divided into sets
of tuple states tssi of tuples within the same tuple state ti, having a strong
impact on the selection and projection operators of queries. These operators
have to take precision into account, and have to return a coherent and
well-defined result. To achieve this objective, data subject to a predicate
P expressed on a demanded precision level i, will be degraded before
evaluating P, using a transformation function τj→i. Given τ , P and i, we
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define the select and project operators σP,i and π∗,i as:

σP,i = σP

 i⋃
j=0

τ∗j→i

(
tssj

) π∗,i = π∗

 i⋃
j=0

τ∗j→i

(
tssj

)
Here, τ∗j→i(tssi) has the following meaning: transformation function τj→i
will be applied on every tuple in tuple state set tssi, so that every tuple will
be represented by a degraded version. This does not mean that the tuple
will be physically degraded.

The level of precision i is chosen such that it reflects the declared pur-
pose for querying the data. Then, queries can be expressed with no change
on the sql syntax in the example below.

Example 2. Consider the table Person with two degradable attributes, Loc-
ation and Salary. The purpose of a certain application is to gather some
statistics about the current salary distribution over countries, for which it
needs the location with precision Country, and the Salary in intervals of size
1000. It declares its purpose Stat as:

DECLARE PURPOSE Stat
SET PRECISION LEVEL Country for location, Range1000 for salary

Now the application can query the database using regular SQL statements:

SELECT * FROM Person
WHERE location like ’France’ and salary = ’2000-3000’

The predicate of this query will be evaluated on all data with a higher
or equal precision as stated in the purpose Stat, hence it will contain all
tuples from the Person table for which both attributes Location and Salary
have at least the precision Country and Range1000. All other tuples are
discarded. Before evaluating the predicate and the projection, the tuples
are first degraded up to the requested level of precision (thanks to the
transition functions) if required.

The semantics of update queries is as follows. First, the delete query se-
mantics is unchanged compared to a traditional database system, except
for the selection predicates which are evaluated as explained above. The
delete semantics is similar to the deletion through sql views. When a tuple
must be deleted, both stable and degradable attributes will be deleted.

Second, insertions of new elements are granted only in the most accur-
ate state. Finally, we make the simplification that updates of degradable
attributes are not granted after the tuple creation has been committed. On
the other hand, updates of stable attributes are managed as in a traditional
database system. Hence, the semantics of update queries is as follows:
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Delete The semantics remains unchanged compared to a traditional data-
base system, except that the where statement, if present, is evaluated
over the chosen subset based on the purpose specification rather than
over the complete table (as with queries). Thus, the delete semantics
is similar to the deletion through sql views. When a tuple is deleted,
both stable and degradable attributes are deleted.

Insert We adopt the simplification that insertions of new elements are gran-
ted only in tss0.

Update We adopt the simplification that updates of degradable attributes
are not granted after the tuple creation has been committed in tss0.
On the other hand, updates of stable attributes are managed as in a
traditional database systems.

Updating degradable data is not considered, but this is only to simplify
the discussion on transaction semantics and recovery procedures. In sec-
tion 4.4.1 we will briefly discuss how updates on degradable data can be
granted. Moreover, we will discuss alternative query semantics in general.

4.1.6 Consequences of data degradation for ACID-properties

In traditional database systems, the well-known acid-properties make sure
that transactions are processed in a well-defined and correct way. The
properties are (in short):

A Atomicity. Transactions are either fully executed or not executed at
all.

C Consistency. After (and before) a transaction ends, the database will
be in a consistent state.

I Isolation. A transaction runs in isolation, meaning that transactions
cannot see or use the effect of other transactions.

D Durability. Once a transaction has completed successfully, the effect
of the transaction will be permanent.

Without data degradation, a transaction inserting a data item will be pro-
cessed in the following way: once the insert transaction has been fully
completed, without intervention of other transactions, the database system
checks data consistency, and makes sure that the data can be recovered
after a system failure. With data degradation, however, we can make the
following observations regarding the acid-properties:

ad A An insert statement for a tuple containing degradable attributes trig-
gers a degradation process, which has to make sure that the life-
cycle of the attribute is respected. This means that a transaction will
cause multiple follow-up transactions which we name degradation
side-transactions, all having the task to insert the tuple into (and re-
move from) its corresponding tuple state set at the correct time. Hence,
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when a data item has been inserted successfully, the database sys-
tem has to make sure all degradation side-transactions will be fully
executed too.

ad C After an insert statement has been checked on consistency, e.g., the
insert does not violate any integrity constraints, the inserted item will
undergo updates triggered by the degradation transactions. Those
updates are not allowed to violate any integrity constraints, since the
above atomicity property requires that the degradation transaction
will be fully executed.

ad I Degradation side-transactions have to be protected against deletes of
conflicting, uncommitted regular user transactions.

ad D Although an insert statement should be durable in any case, the
durability requirement ends at the time a degradation transaction
takes place. Moreover, it should be impossible for the database system
to redo an insert statement, and undo each degradation transactions
from the moment the next degradation transaction takes place. More
precisely: a tuple t stored in a tuple state set tssi is stored durably
only for the duration ∆i+1 of the corresponding tuple state. After δi+1,
the content of t as it was in tssi should be unrecoverable.

Above observations lead to revisions of the atomicity and durability prop-
erty. First we give a definition of transactions in the context of data degrada-
tion for inserting a tuple with n tuple states. Instead of a single transaction
T, we split T into a set containing a main transaction and side-transactions,
[T0,T1,T2, . . . ,Tn,Tf ], such that:

• T0 is the main transaction inserting a tuple t into tuple state set tss0.
When T0 finishes with a commit, the result of the transaction will be
visible.

• For each i (0 < i ≤ n), Ti is a degradation side-transaction. The degrad-
ation side-transaction Ti has the following result: if any attribute A of
a tuple t, with attribute state Aa, has a retention period δa = δi, then
transformation function τa has been applied on attribute A. Hence,
degradation side-transaction Ti on a tuple member of tuple state set
tssi results in a transition of t from tssi to tssi+1.

• Tf (with f = n + 1) is the destruction side-transaction, removing t from
the last tuple state set tssn.

If a tuple contains only stable attributes, there will be no degradation
and destruction side-transactions, and the traditional acid-properties will
simply apply to T0. For tuples which do contain degradable attributes,
we define two extensions to the acid properties, named ∆-atomicity and
∆-durability:

Definition 4.1.1. ∆-atomicity. A main transaction T0 inserting a tuple t
with n tuple states will be followed by a set of degradation side-transactions
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Ti, 0 < i ≤ n, and a final destruction transaction. Any degradation side-
transaction Ti must be run at time b + δi, cannot be interrupted and has
to be fully executed. To a main transaction T0 the traditional atomicity
property applies, and it can therefore be interrupted with a rollback, in
which case also the side-transactions will be withdrawn.

Definition 4.1.2. ∆-durability. A transaction Ti working on a tuple t is only
durable and thus recoverable during the period between Ti and Ti+1. This
period is equal to ∆i+1. After δi, Ti should be explicitly not recoverable
anymore.

4.1.7 ρ-timeliness

To enforce ∆-durability, a degradation side-transaction Ti on tuple t has to
start exactly at time δi after the birth of t, or to speak in database terms,
after the commit of the insert transaction T0. Respecting this time delay
strictly to the second would incur severe performance penalties, for which
we cannot foresee a benefit in practice. Therefore we propose a weaker
property which we name ρ-timeliness:

Definition 4.1.3. ρ-timeliness A degradation side-transaction Ti on a tuple
t in tuple state set tssi, originally inserted into tss0 at time b, must run (and
finish) within the time window [(b + δi)− 1

2ρ, (b + δi) + 1
2ρ].

We can also choose time window [(b+δi), (b+δi)+ρ] or [(b+δi)−ρ, (b+δi)].
We believe that this choice has no foreseeable influence on the main benefits
of ρ-timeliness. Moreover, although we believe that the value of ρ should be
application dependent, our intuition suggests a direct relationship between
the retention limit ∆ and ρ; the smaller ∆, the shorter ρ is supposed to be.

The sole purpose of the ρ-timeliness property is performance, and it
enables a feasible technical implementation of our degradation model. In
the following sections we will discuss the technical challenges for imple-
menting our model, and indicate where we have to redesign core database
system techniques.

4.2 Technical challenges

Since we want data degradation to take place within a relational data-
base system, the first and legitimate question which comes to mind is how
complex will the technology be to support it. Identifying the impact of mak-
ing a database system data-degradation aware leads to several important
questions.
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4.2.1 How to enforce ∆-atomicity and ∆-durability?

As stated in definition 4.1.2, a transaction should only be recoverable during
a limited period. However, as pointed out in [71], traditional database
systems cannot guarantee the non-recoverability of deleted data due to
different forms of unintended retention in the data space, the indexes and
the logs.

Two existing candidate techniques [71] tackle the recoverability issues
and have to be properly adapted to the context of data degradation. The
first one is physically overwriting the data with its degraded value, and
a dummy value when the tuple reaches its final state. The second option
is to pre-compute all values, encrypt them, and destroy the encryption
key when the value should not be recoverable anymore, making the value
undecryptable, assuming that it is computationally not feasible to break
the used encryption method.

These two techniques exhibit opposite properties in terms of degrad-
ation and access efficiency. Overwriting tuples is highly I/O inefficient,
therefore the number of I/O’s should be limited as much as possible. The
problem is particularly acute considering that each data item inserted in the
database undergoes multiple degradation steps. And although removing
encryption keys might be very efficient, encrypting data is highly inefficient
when it comes to accessing this data to answer queries. In this light, the
storage structure for degradable attributes, indexes and logs have to be
revisited.

4.2.2 How to speed up queries involving degradable attributes?

Database systems have been designed to speed up queries. Some workloads
induce the need of few indexes on the most selective attributes to get the best
trade-off between selection performance and insertion/update/deletion
cost. For other application, insertions are done off-line, queries are complex
and the data set is very large. This leads to multiple indexes to speed
up even low selectivity queries. Data degradation can be useful in both
contexts. However, data degradation changes the workload characteristics
in the sense that queries become less selective when applied to degradable
attributes. This introduces the need for indexing techniques supporting
efficient degradation.

4.2.3 How to guarantee ρ-timeliness?

The ρ-timeliness relaxation (see definition 4.1.3) has been introduced for
the sole purpose of performance. Nevertheless it still requires that data
should be degraded on time. However, implementing degradation side-
transactions in a traditional dbms by means of normal transaction manage-
ment may lead to conflicts, with deadline misses and deadlocks as result.
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Still, degradation side-transactions need some sort of isolation control;
hence, we need to redesign a synchronization protocol for degradation (and
destruction) side-transactions.

4.3 Impact of data degradation on core database system
techniques

Now we have seen the challenges brought forward by data degradation, we
will discuss technical solutions for it. Some of the techniques discussed
here have been implemented into a functional prototype, which will be
discussed in section 5.2. With this prototype, a performance study has been
carried out. The results of this study will also be presented in chapter 5.

4.3.1 Storage structure

A storage structure is a representation of how data is stored and organized
on an hard disk. We consider here only disk based storage and keep any
main memory based database system out of consideration.

A storage structure defines how rows of a table are organized in files [64].
The choice of storage structure for a particular application is based on find-
ing the best balance between query and insert efficiency. There are many
types of storage structures in use in traditional database systems, such as the
heap structure, the sequential (or sorted) structure, the hash structure and the
B+tree structure [43]. Our degradation model changes the characteristics of
the traditional workload of a database system, and thus also the require-
ments for the storage structure. Apart from the heap structure—which we
will discuss later—most storage structures are degradation unfriendly.

The most basic, but also most insert efficient storage structure to in-
sert data, is an heap file, in which data is inserted in the end of a file, in
chronological order. However, this leads to poor query performance when
queries are selective; without an additional secondary index a sequential
scan on the whole structure is required. To speed up queries, records can be
kept ordered on the primary key of the relation. A sequential file is such a
structure. Unless this primary key is an auto-increasing record number, this
is not the insert order, and insertion costs will therefore be higher because
of the maintenance of the ordering in the file.

Traditionally, one of the most commonly used structures to store data
is the B+tree structure [64]. As a result, lookups of any particular tuple
selected on its primary key takes O(log(n)) time, and range queries on the
primary key can be answered efficiently. However, inserting any individual
tuple is costly and, which is more problematic in the context of data de-
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gradation, also updating an individual tuple takes O(log(n)) time. Hence,
for such storage structures the cost of data degradation will be very high.

In the following we propose a new storage structure based on the heap
structure, in which, as we will we see, a set of degraded data can be degraded
in O(log(1)) time. Our objective is to find the best variant of this storage
structure which takes beside inserts and queries, also data degradation into
account. Along the way we take the following properties and limitations
into account:

• Generating a generalized value comes for free. We only consider costs
of replacing (or removing) a more accurate value for a generalized
value.

• Some memory buffers or caches are available, but in the end we need
hard disks to store the data.

• We consider two types of I/O operations:

– random I/O: the disk arm has to move to find a particular page
on disk to read or write it (typically 10 ms per page).

– sequential I/O: the page can be found physically next to the pre-
vious page on disk and be written or read from there (typically
0.05 ms per page).

• To read or update a tuple, always the full page in which a tuple is
contained will be read and/or written. Hence, I/O operations are
performed on full pages.

A degradation friendly storage structure

A key factor in our investigations of a degradation friendly storage structure
will be the ρ-timeliness property; this property allows us to be flexible in
the time when a tuple has to be degraded, making it possible to group
those tuples together. This way we are able to limit the amount of I/O
operations drastically, because one I/O operation can be shared by multiple
updates on tuples. To enable this feature, we have to order the data files
on insertion time because then tuples which can be degraded together will
also be physically stored close together. Hence, we are looking for a storage
structure based on the traditional heap structure, with the main difference
that we will enforce the ordering on insert time.

Note that the ordering on degradation time only holds because of
the simplifications we made (see 4.1.1), stating that degradation is only
triggered by time (time triggered) and that all retention periods are the
same for each tuple (uniformity). Hence, regardless which derivative of
our storage structure we choose, all tuples in the data files we use will be
sorted on insert time. Some derivatives will consist of multiple files, each
containing degradable data.
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To each data file we assign at least one insert buffer, and, depending
on the storage strategy, a degradation buffer. Those buffers are stored in
ram and make it possible to flush several tuples together to disk, and share
the I/O’s required to insert and degrade the data. Degradation of x tuples
from a data set containing n tuples can therefore in theory be performed
in O(log(1)) time, compared to the O(x log n) time needed when using a
storage structure in which the data is not ordered on insertion time. See
figure 4.4 for a graphical representation.

A degradation schedule is attached to each data file and manages at
what time which data has to be degraded. This can be implemented by
maintaining a table in which pointers to the pages to be degraded are stored
with the corresponding degradation time. Since tuples are grouped by
intervals of size ρ, time can be measured in units of ρ, so that t = n gives the
time of the nth degradation step since startup time of the database system.
The schedule itself can be stored in ram; the size of the schedule is bounded
by the tuple state duration and ρ. This is also pictured in figure 4.4.

As an optimization, we can choose to degrade only full pages, meaning
that tuples will be degraded which, given the insertion time and the toler-
ance ρ should not be degraded yet. Although this will not harm privacy, it
harms data usability since effectively the retention period of tuples will be
shortened. However, the advantage in performance is that pages never have
to be written more than once to disk.

Baseline approach

In a traditional database system, a tuple will be stored as a single entity: all
attributes—both stable and degradable attributes—will be stored together
in one single block on disk. Degrading a tuple can be enforced irreversibly
by fetching the block containing the right tuple, and updating the tuple by
overwriting the relevant attribute value(s) with the new value(s).

If tuples are large, less tuples will fit in such a block. Hence, for larger
tuples, more blocks need to be read for the same amount of tuples. This is
particularly important to know in the context of data degradation, in which
many tuples need to be read, updated, and written back to disk.

For this reason we foresee that the performance of data degradation
using this strategy will be poor, especially when the number of attributes
is large. This effect will be amplified when a high number of degradation
steps have to be performed; e.g., the number of tuple state sets is large.
This approach, in which all attributes of a tuple are stored together will in
the following be referred to as the baseline approach. To give an indication
of how data will be organized internally we give an example in figure 4.5,
where degradable attribute A stands for zip-code, degradable attribute B for
a time-stamp, and id is a stable attribute. Every tuple state is represented
by its own table, and each tuple state set is stored in its own data file (see
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p0r78 n
p2r92 n + 1
p3r2 n + 2

p7r56 n + 7

degradation
schedule

p1p2p3p4p5p6p7 p0

data file

p2 p1

degradation bufferinsert buffer

Figure 4.4 Degradation schedule and a heap file structure. A p stands for page number, r
for record offset within the page. The schedule contains pointers to the youngest tuple which
has to be degraded at a certain time, calculated as number of intervals of size ρ passed
since database system startup time. The blocks represent full pages, the shaded area
represents tuples which can be degraded together. The page with offset p0 has already
been removed during the previous degradation step n. For degradation step n + 1, pages
p1 and p2 will be transferred to the buffer. Offsets in the buffer correspond to addresses of
the pages when they were still on the disk. As an optimization choice (and for simplifying
this figure), full pages can be degraded, even if the page contains tuples which should not
be degraded yet.

figure 4.6).

In the following we consider a number of variations of the storage structure
described above, which basically try to overcome the discussed disadvant-
ages. The best storage structure will be that in which the amount of I/O
needed to degrade data is minimal, while also keeping the amount of I/O
needed for querying as low as possible. Basically, we will consider whether
or not we should pre-compute and store all attribute and/or tuple states, and
whether or not we should fragment or cluster the attributes over multiple
data files. This leads to four combinations and storage models which we
describe in more detail in the following sub-sections. The two dimensions
are:
Clustered vs Fragmented Clustered means that all attributes of a tuple state

are stored together in one data file (like in most traditional database
systems). while fragmented means that all degradable attributes are
vertically fragmented into separate data files. Some database systems,
such as MonetDB, already use such a form of fragmentation [23].

Eager vs Lazy With an eager strategy, all attribute states are pre-computed
and all generalized values an attribute will take are stored at insert
time. Hence, the transformation functions are applied at insertion
time. With a lazy strategy the new form of an attribute is computed at
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Figure 4.5 A snapshot of a database containing tuples organized using the baseline
approach taken at time t0 and at time t1 > t0. Tuples in higher tuple state sets will contain
less accurate versions of the degradable attributes. The tuple belonging to identifier HvH
which was in tss3 at time t0 has been fully removed from the database at a time t0 < t < t1,
and is not present anymore at time t1.
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tss0 tss1 tss2 tss3
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Figure 4.6 An abstract representation of the baseline storage structure. All tuples belong-
ing to the same tss are stored in one single data file. Square blocks represent a bunch of
attributes. The fading colors represent data degradation, where the black blocks are stable
attributes, and white blocks are empty (deleted) spaces. This same representation will be
used to represent the other storage strategies.

degradation time.
For each storage model, we will give the advantages and disadvantages of
the chosen strategy combination.

Clustered eager

This strategy is schematically represented in figure 4.7a at page 76, in a
similar way as figure 4.6. For the explanation of this and the following
strategies, we will use the life-cycle as shown in figure 4.2, and add to that
one stable attribute (as used in the baseline-approach example). A tuple
with its original schema {A,B} will be expanded into a set of tuples with
schema’s {A0,B0}, {A0,B1}, {A1,B1}, {B1}. Each tuple will be inserted into its
own dedicated data file, which will remain sorted on insertion time. Hence,
for each tuple state there will be one data file.

The main advantage of this approach is that degradation can be imple-
mented by means of only delete operations; it is not needed to read the
attribute to delete it, and therefore no read I/O operations have to take
place, reducing overall I/O cost. Because the files are ordered on insert time
and therefore degradation time, the tuples to be deleted can be found at
the end of the file, making it possible to efficiently manage the degradation
process using a degradation schedule. Moreover, all attributes of a tuple
are stored within the same data file, so reconstruction of tuples to produce
query results is not needed.

The main disadvantage of this approach is that the data is stored redund-
antly, requiring more storage capacity and additional I/O costs at insertion
time. For example, a copy of attribute A in attribute state A0 is stored in
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two data files, B1 is even stored in three data files. The severeness of this
disadvantage depends on the amount of degradable attributes and states
per attribute.

Fragmented eager

In this strategy, for each attribute state there exists a data file in a similar
fashion as the clustered strategy. To compare: in the clustered strategy there
is a data file for each tuple state. With the fragmented strategy, a tuple with
schema {A,B} will be fragmented into a set of tuples consisting of only one
attribute: {A0}, {A1}, {B0}, {B1}. This is pictured in figure 4.7b.

The main advantage of this strategy is that, like the clustered eager
strategy, degradation can be performed without read operations. Moreover,
unlike the clustered strategy, each attribute state is only stored once, redu-
cing redundancy. This means that when data is deleted from a file, only
data is touched which indeed had to be removed at that point, reducing the
amount of I/O needed and fully benefiting from the I/O operation.

The disadvantage of this strategy is that, if n is the number of attributes,
a tuple state set is in this strategy a join between n data files, unless one
or more of the attributes are in their final state and thus removed; then a
smaller number of data files need to be joined. To reconstruct a tuple in
a particular tuple state set, additional I/O operations are needed, making
such a strategy less efficient for querying. However, for conditional queries
with a low selectivity, the query executor can benefit from this fragmented
storage structure. Only the data files with attributes which participate in
the select predicate have to be scanned. Since those data files are smaller in
size—they contain less attributes—the sequential scan requires less I/Os.
For this purpose, database systems using fragmentation exist, such as,
among others, MonetDB [23].

Clustered lazy

As described earlier in this section, with the lazy strategies the generalized
values of the attributes are computed at degradation time, and not pre-
computed as with the eager strategies. For the clustered lazy strategy this
means that the original tuple will remain intact, and will be inserted in
one single data file representing tuple state set tss0. At degradation time, a
set of tuples which is allowed to degrade at the same time—thanks to the
ρ-timeliness property—will be removed from the data file, degraded, and
inserted into a new data file representing the next tuple state set in line.
See figure 4.7c.

As with the clustered eager strategy, for each tuple state set there exists
one data file. However, the difference is that each data file now only contains
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tuples which only belong to one tuple state set. Hence, with the lazy strategy
there is no redundancy.

At degradation time, pages have to be read from disk, to generalize
them, and to insert them into the new data file representing the next tuple
state set. This increases the amount of I/O needed for degradation and is
therefore a disadvantage of this strategy.

Fragmented lazy

In this strategy, a tuple with schema {A,B} will be fragmented into two
tuples {A0} and {B0}, representing the first attribute states of both attributes,
and inserted into their designated data files. There exists a data file for each
attribute state; an attribute is inserted in its new data file at degradation
time (instead of at insert time with the eager strategy). See figure 4.7d.

With this strategy, as with the clustered lazy strategy, there is no data
redundancy. Still, to answer queries, tuples have to be reconstructed since
they are fragmented over multiple data files, making querying less efficient.
Again, since the strategy is lazy, for each degradation step a read operation
is required.

Comparison of storage structures

To give an indication of the strong and weak points of the variations, we
present here a simple scenario, and compare the amount of disk pages
needed to store a certain amount of tuples, and the I/Os needed to insert,
degrade and query the data. A more elaborate performance study will
follow in chapter 5.

To simplify the discussion, we consider a constant insert rate of 100
tuples per second, which makes that with a ρ of 10 seconds, 1000 tuples can
be written and degraded at once. A single page has space for 100 attributes;
hence, if a tuple contains 4 attributes, the page can contain 25 tuples. To
store 1000 tuples of 4 attributes, we need 40 pages.

In figures 4.6 and 4.7, each block stands for 1000 attributes. Hence,
in total 50 × 1000 tuples have been inserted. The total amount of pages
needed to store this data basically depends on the amount of redundancy
used by the chosen strategy. Two types of redundancy can occur; first,
the clustered strategies store multiple copies of an attribute and secondly,
the eager strategies store a degraded version of an attribute together with
the non-degraded one. Hence, most pages are used by the clustered eager
strategy. The number of pages needed are listed in figure 4.8.

At first glance, sticking to the baseline technique is the best choice for
both inserting and reading data. Indeed, the baseline technique is the
common storage structure used in traditional database systems for storing
and querying data. However, degradation costs are much higher for this
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Figure 4.7 Degradation friendly strategies, where all blocks within a box belong to the
same tuple state set.
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pages insert I/O degradation I/O read I/O

bl 1650 1 × (1|32)w 3 × (1|32)r + 4 × (1|32)w 1 × (1|32)r
ce 2000 2 × (1|9)w + 2 × (1|19)w 4 × (1|19)w (1|19)r + (1|9)r
fe 1400 5 × (1|9)w 4 × (1|9)w 3 × (1|9)r
cl 1300 (1|9)w + (1|19)w 3 × (1|19)r + 3 × (1|19)w + (1|9)w (1|19)r + (1|9)r
fl 1300 3 × (1|9)w 3 × (1|9)r + 4 × (1|9)w 3 × (1|9)r

Figure 4.8 This table shows a cost model based on the examples given in figure 4.6 and
4.7, and shows the amount of pages needed to store 50,000 tuples given the different storage
structures, and the number of (random | sequential) I/O operations needed for inserting,
degrading and reading 1000 tuples. One block in the figures stands for a set of 1000
attributes. The baseline strategy performs best for inserting and reading data, fragmented
eager for degrading the data. Those numbers are only valid under the assumption that all
bunches of sequential I/O can be performed without being interrupted. The abbreviation BL

stands for baseline strategy.

strategy. If it comes to degradation, the fragmented eager strategy is most
efficient; the cost at insertion time is however much higher.

If we consider that complying with the ∆-durability and the ρ-timeliness
property has the highest priority in our context, and therefore the degrada-
tion process is the most time critical, we expect that the fragmented eager
strategy is the best strategy to implement in a degradation supporting
database system. As mentioned earlier, the costs for degradation using the
baseline strategy is amplified by the amount of stable attributes, something
which is not the case for the other strategies, while the read and insert costs
will grow proportionally compared to the baseline strategy for all strategies.
This makes the choice for a strategy other than the baseline strategy even
more viable.

Although very suitable for degradation, the fragmented eager strategy
might not be the best strategy when query load is high. For applications
with a high query load, one might choose a strategy where query costs
are lower, but the degradation costs are higher, such as the cluster eager
strategy. When insert loads are high, clustered lazy can be a good option.
Finally, fragmented lazy can be a good compromise with respect to insert,
degradation and read performance. As said before, to validate our findings
we will use a prototype to experimentally analyze the performance of the
described storage structures. More about this in section 5.2.

4.3.2 Indexing

Indexing degradable attributes leads to two technical problems. First,
attributes undergo transitions to multiple levels of precision and therefore
their index key will change over time. Moreover, the selectivity of the access
path decreases when the attributes are more generalized; an index suitable
for the most accurate attribute state might not be the most efficient index
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Figure 4.9 Example with two attributes and one index. As long as there is a pointer in the
index on zip-code to the data file, Ida’s zip-code can be reconstructed.

for higher attribute states. Since predicates on low accurate data—where
the same attribute value will occur more frequent than in high accurate
data—will result in larger result sets, we say in the following that queries
on low accurate data are low (or not) selective, and queries on high accurate
data are high selective.

Second, to comply with the ∆-durability property, data has not only
to be removed from the storage structure, but from the indexes too, since
those data can reveal information about previous attribute states, or even
fully recover them. See figure 4.9 for an example. In traditional database
systems it is not common usage to delete keys directly from the index;
instead tombstones are used to invalidate a pointer in the index [43]. Hence,
again changes to the database system kernel will be required to ensure
∆-durability.

In the following we will consider a number of indexes and investigate
the cost to update the index, and how applicable the index is for high or low
accurate data. The ρ-timeliness property can be exploited to make removal
from the index less costly; however, to do this, data which can be removed
together must be stored physically close together, something which is not
the case in tree-based indexes. In this section we will give an overview of
the various index techniques. An analysis and comparison of the B+tree,
bitmap, Bloom filter and hash index will follow in section 5.4.
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B+tree index

Traditionally, the B+tree index is the most frequently used index for high
selective queries. Hence, B+trees are not only used as storage structure,
but can also act as a secondary index, especially in cases where the data is
stored in an unordered structure, as is the case with our storage structure.
However, we have seen before that the B+tree as storage structure is ineffi-
cient for data degradation. In the same spirit, the B+tree as index is also
inefficient for data degradation, since every delete or update results in a
random I/O; a B+tree index cannot be sorted on degradation time, but is
instead sorted on the key values themselves.

One solution to overcome the high cost of random I/O is the use of
encryption. Assuming that the key values in the index themselves are not
privacy-sensitive—they become sensitive when it becomes possible to relate
them to full tuples—we do not have to remove those values immediately
from the index. Instead, we make sure the pointers cannot be used any-
more. We can achieve this by encrypting the pointers; after every period
with length ρ we choose a new encryption key, and store this key in the
degradation schedule. When data needs to be degraded, we can simply
remove the key from the table. This is illustrated in figure 4.10.

Although not required to ensure ∆-durability, obsolete index entries
should still be removed from the index, because the size of the index has
an impact on performance of the index. This can be done in a lazy way; for
example when the node in which an entry to be deleted is stored is updated
with a new value, the node can be scanned for invalidated entries and these
can be removed without requiring any additional I/O operations.

One can wonder why we would not use encryption to enable cheap
removal from the data files itself, as suggested by Miklau et al. [81]. The
reason is that to answer a question all data has to be decrypted. Since
decryption costs are relatively high compared to the cost of a sequential
I/O, querying encrypted data will be relatively costly. Moreover, indexing
encrypted data is not an easy task; for further material on this topic we
refer to [48, 98, 26].

Bitmap index

When data degrades, the domain of the degraded attribute becomes smaller
and therefore the size of the result-set of queries larger. In the following we
label such queries as medium selective. To answer medium selective queries,
bitmap indexes can be used [34, 57]. Here we give a brief summary of what
bitmaps are, so that we can compare them with other indexes, especially
with regard to performance in a data degradation context.

In general, bitmaps are useful to index attributes of a domain with
relative low cardinality (the number of possible attribute values is low). In
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Figure 4.10 Degrading a B+tree index by means of encryption. The dashed lines represent
pointers which cannot be decrypted anymore. The encryption keys can be stored in the
degradation schedule, from which they will be removed at the same time as the tuples in the
data files appointed by the schedule.

the most simple form, it uses one bit vector for each possible value of the
attribute. Each position in the bit vector where the bit is set to 1, the tuple
at the corresponding position in the table has the value associated with the
bit vector (see figure 4.11).

For a table that consists of N tuples, with an indexed attribute with
domain cardinality C, the bitmap consists of C×N bits. Referring to the
terminology used in [34], we name such an index an equality encoded one-
component bitmap. Equality encoded bitmaps are optimal for equality
queries, but can also be used to answer range queries. Besides the equality
encoded bitmap—which is the most common used—the range encoded
bitmap can be used for range queries. For more information we refer
to [34]. The term n-component stands for the amount of bit vectors needed
to represent a value of the domain. Hence, for a one-component bitmap,
only one vector is used per domain value, and therefore there are as many
bit vectors as the size of the domain.

The one-component index is not space efficient if the cardinality C is
high; for each possible attribute value it needs one bit vector. As a result,
when C is large, the index might even be bigger than the actual data file
itself. Nevertheless, to answer queries, the one-component index needs only
one sequential scan on usually a small data file, and is therefore very time
efficient.

To overcome the space problem, the bitmap can be decomposed into
multiple components: we can decompose all possible values of a domain
given a base sequence 〈bn,bn−1, . . . ,b1〉 to get a n-component index. More
precisely, an attribute value v can be decomposed into a sequence of n digits

80



4.3. Impact of data degradation on core database system techniques

a (1)

b (2)

x (24)

z (26)

x b z

N = |R| tuples

R

Figure 4.11 One component equality encoded bitmap

v = vnvn−1 . . .v1, where each vi is a base-bi digit, as follows: [34]

v = vn

n−1∏
j=1

bj

+ . . .+ vi

 i−1∏
j=1

bj

+ . . .+ v2b1 + v1 (4.1)

For example, if we chose base sequence 〈7,4〉, the value v = 26 would be
decomposed as v = v2×b1 +v1 = 6×4+2. Using a base sequence 〈7,4〉 we are
able to encode 7× 4 = 28 values: {0, . . . ,27} = {0,1,2,3,4,5,6} × 4 + {0,1,2,3}.
A graphical representation of a base-〈7,4〉 bitmap is shown in figure 4.12.

The benefit of such a decomposition is, that less bit vectors are needed to
represent all values of a domain, and therefore it uses less space. However,
more vectors have to be scanned to answer a query. More about performance
considerations can be found in section 5.4.

Bitmap indexes are update—and therefore degradation—friendly due
to their sequential nature. The indexes maintain the same order as the data
files, and are therefore ordered on insert and degradation time. Hence,
I/O operations can be shared by multiple tuples, and the degradation
mechanism can fully benefit from the ρ-timeliness relaxation and the time

triggered and uniformity simplifications.

Bloom filter index

Bloom filters are space efficient filters used to optimize so-called member-
ship queries [27] and have been introduced by Bloom in 1970 [22]. Applied
in database systems, sequential scans can be prevented, saving I/O costs.
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Figure 4.12 Base-〈7,4〉-equality encoded bitmap, where only the mappings of the values
x,b and z ∈ R are shown. For the value x (numerical value is 23 (a = 0,z = 25), which
can be decomposed in 5× 4 + 3) the bits at the correct offsets in the 6th vector of the 1st

component and the 4th vector of the 2nd are set to 1.

The size and lookup time of a Bloom filter are constant; however, false
positives can occur.

A Bloom filter is basically an array of bits which are initially set to zero.
When a value is inserted into the data set, k hash functions are applied on
the inserted value; based on the outcome of the hash functions k positions
in the Bloom filter are set to one. To check if an element is in the data set,
the k hash functions have to be applied on the value. If the k positions in the
Bloom filter are equal to 1, the value might be in the data set. A sequential
scan–or whatever is the most appropriate access path–is required to decide
whether the value indeed occurs in the data set. If one or more bits are
equal to 0, the element is not in the data set, and a sequential scan has
been avoided. Only false positives can occur, no false negatives. See for a
graphical representation figure 4.13.

Bloom filters can be used to form an index on a data set in a similar
fashion as bitmap indexes [100]. For each tuple in a dataset we create a
Bloom filter using k hash functions and add the attribute value to be indexed
to this Bloom filter. Hence, the Bloom filter contains only one element, and
the whole Bloom filter index is build up from many Bloom filters. Note
that a higher performance benefit—compared to the bitmap techniques
described before—can be obtained if we create one Bloom filter per page.
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Insert x:
h1(x) = 4

h2(x) = 13

Insert y:
h1(y) = 13
h2(y) = 18

Query z:
h1(z) = 4
h2(z) = 8

Query fp:
h1(fp) = 4

h2(fp) = 18

Figure 4.13 Example of a Bloom filter using two hash functions. A query on z results in a
true negative, since the bit at place h2(z) is still zero. Bits on location 4 and 13 are set by
hash functions h1 on x and h1 on y. This causes a false positive when querying fp, since
h1(fp) = 4 and h2(fp) = 13.

Then, all tuples in a page are represented by one bloom filter, and added
to the bloom filter as described in Figure 4.13. The disadvantage of such
approach is that the probability of false positives will be higher; however,
less storage space is needed to store the index.

Now, as illustrated in figure 4.14, we vertically fragment each Bloom
filter so that each bit of the Bloom filter is stored in a separate file dedicated
to a position in the Bloom filters, so that if there are N tuples, each fragment
contains N bits (or, when page based bloom filters are used, N/p where p
represents the number of tuples in a page). Hence, if the ith and jth bit of
the Bloom filter of a tuple at a certain offset in the dataset are set to one, the
ith and jth fragments contain a bit set to one at that offset.

To find the positions in the dataset of tuples (or pages containing one
or more tuples) containing a specific attribute value x, we apply the hash
functions on x and find the k fragments referenced by the output of the
hash functions. By performing a bitwise and operation on the k bit vectors
and a scan of the resulting vector, we are able to find the positions of the
corresponding tuples (or pages) in the dataset. See again figure 4.14 for an
example.

The most interesting property of a Bloom filter index in the context of
data degradation is, that the number of data files needed is more or less
independent of the cardinality C. This makes the index interesting also
for higher cardinality domains, although, as we will see in section 5.4, the
number of false positives plays an import role in query efficiency.
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Figure 4.14 Example of a Bloom filter index using 2 hash functions. All Bloom filters (one
per tuple) are drawn vertically, and fragmented into fragments. Each fragment is drawn
horizontally. When a tuple x is inserted, the hash functions determine positions in a Bloom
filter, for which the bits at the correct offset in the corresponding fragments (determined by
the result of the hash functions) are set to 1.

Hash sequential list index

An hash sequential list index is basically the same as a normal hash in-
dex [43]. The basic idea behind the design of hash sequential list index is to
benefit from sequential deletes. A hash sequential list index (hsl) consists
of a set of hash buckets containing value/pointer-pairs, which are ordered
on insert time. The bucket in which a value will be placed is determined
by a hash function on that value; a bucket can contain multiple different
values. See figure 4.15.

To answer a query on value x, the hash function is applied on x to
determine the bucket which contains the value/pointer pairs containing
x. A scan of this bucket will retrieve all pointers to the data file. This
type of index is only useful for equality queries; for range queries, a range
partitioning function can be used instead of the hash function.

The techniques to manage degradation, as discussed in section 4.3.1,
can be applied to degrade data from the buckets, making this technique
interesting for data degradation purposes.
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Figure 4.15 Hash sequential list index. The buckets are ordered on insert, and thus
degradation time. The buckets consist of value/pointer pairs; multiple values can share the
same buckets. The shaded area denotes already removed values.

4.3.3 Transaction management and recovery mechanisms

An important aspect of database system management is the way how (con-
current) transactions are managed. First, concurrent transactions need to
run within an appropriate isolation level to keep the database in a consistent
state, and second, in case of rollbacks and or media failure, the database has
to be brought back in a consistent state. Due to the requirements of limited
retention and data degradation, we have to revisit traditional transaction
management techniques. In the following, we will discuss how degradation
side-transactions can be synchronized with regular user transactions, and
we will discuss how logs can be managed in an degradation efficient way.

Avoiding degradation side-transaction conflicts

An important aspect of a relational database system supporting data degrad-
ation is how to deal with regular user transactions and degradation side-
transactions running concurrently. The ∆-atomicity property (see defini-
tion 4.1.1) states that every main transaction results in a set of degradation
side-transactions, which are guaranteed to commit, and the ∆-durability
property (see definition 4.1.2) requires that degradation side-transactions
commit exactly at the end of the assigned retention periods. To guarantee
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Figure 4.16 Schematic overview of an user transaction T querying all tuples with re-
quired precision i = 2, and degradation side-transactions ds0 . . .ds2 degrading data from
tss0 . . . tss2 respectively. Transaction T is not allowed to update tuples. Since the result
of ds0 and ds1 will have no impact on the view of T, and T has no impact on the tuples
subject to the degradation steps, no serialization of T and ds0, and T and ds1 is needed.
Only the result of ds2 will impact T. Therefore, degradation side-transaction ds0 requests a
lock on all tuples which it will degrade after a time period ρ. Similarly, T requests a lock on
all tuples it wants to access. If transaction T is still running at the end of period ρ, T will be
aborted. If T is blocked by ds2, waiting makes no sense, since the tuples will leave the view
of T.

that every degradation side-transaction results in a consistent database
state, normal isolation levels can be used; however, this will eventually lead
to blocked or deadlocked degradation side-transactions.

Without any additional measures, to ensure degradation side-transactions
run at the exact designated time, many regular user transactions have to be
blocked or even aborted. Because each main transaction T triggers multiple
degradation-sub transactions— where the number depends on the number
of tuple states—relying on traditional isolation control will lead to poor
performance.

To avoid as many transaction conflicts as possible, we propose a least
effort degradation process, which takes benefit of the ρ-timeliness property
introduced before (see definition 4.1.3). Thanks to the ρ-timeliness property,
a degradation side-transaction can degrade multiple tuples at once, and can
wait until the end of time interval with size ρ before data has to be degraded.
In the following we consider how a regular user transaction T, working
on a view including tuple state sets tss0 . . . tssi can be synchronized with
degradation side-transactions ds0 . . .dsi, each dsj degrading (or removing)
data from tssj. We make the following two important observations:
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• No degradation side-transaction will cause dirty-reads by T, since
thanks to the ∆-atomicity property, a degradation side-transaction
is guaranteed to commit. Therefore, also regular user transactions
running with an isolation level equal to read-committed (and those
with a lower isolation level), do not need to be synchronized.

• Degradation side-transactions ds0 . . .dsi−1 do not impact the view of
regular user transaction T. The view of T contains tuples which are
transformed to the precision of tuple state i (see query semantics in
section 4.1.5). Hence, for T it makes no difference if it accesses a tuple
which is concurrently degraded by a degradation side-transaction,
and therefore does not need to be synchronized with ds0 . . .dsi−1. See
figure 4.16.

Hence, only degradation side-transaction dsi working on the oldest data
in the view of transaction T has to be synchronized with T. To do this,
dsi requests an exclusive lock, and T requests a shared lock on the tuples
which will be degraded by dsi. Those tuples can be identified using the
degradation schedule already introduced before, in section 4.3.1. The nth

degradation side-transaction on tssi will take place at n × ρ + δi+1 since
startup time of the database system. All tuples inserted during the interval
(n− 1× ρ,n× ρ] will be degraded by the nth degradation side-transaction.
If the lock has been acquired by T, degradation side-transaction dsi can
only be blocked until the final deadline at n × ρ + δi+1; at this time, the
blocking regular transaction T will be aborted, otherwise the degradation
side-transaction will miss its deadline. If a conflict occurs and T is blocked
by the degradation side-transaction, it is useless for T to wait until the lock
will be released, since the tuples will leave the view of T. Note that the
tuples possibly locked by the degradation side-transaction are only still
part of tssi thanks to the ρ-timeliness property; without this property, the
tuples would not be accessible by T either and this synchronization protocol
therefore does not hurt data usability.

Note that the chance of T being aborted is relatively small given the
fact that ρ is relatively large, at least much larger than average transac-
tion durations. Therefore the impact of data degradation on transaction
synchronization using above synchronization is limited, because regular
transaction will almost never be aborted and tuples which should be ac-
cessible by a regular transaction will never be blocked by degradation
side-transactions.

Logging and recovery management

Logging techniques are traditionally used to enforce atomicity and durabil-
ity while permitting classical buffer management optimizations like writing
in the database file before a transaction commits (using the so-called steal
strategy), after a transaction commit (so-called no force strategy) as well as
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Figure 4.17 Both main transactions T0 and T′0 insert a single tuple. For each tuple state
ti, the tuple value will be degraded using transformation function τ0→i, encrypted, and
appended to the log. For each tuple state i and time period ρi, a new encryption key

will be created and stored in a circular list of length ∆i. This circular list will contain ∆i
ρi

keys. As long as the tuple should be retained in the database, the encryption key exists,
making it possible to decrypt and recover the tuple only during that retention period. T′0 took
place more than ∆0 before T0, and therefore the original encryption key to decrypt t′0 is
overwritten and not available anymore.

making recovery possible in case of failure. However, in the context of data
degradation, data should only be recoverable during a limited period, as
defined by the ∆-durability property (see 4.1.2). Hence, after its retention
period, data should disappear also from the log files.

Our objective is to keep the interesting optimizations made possible
thanks to logging techniques, also valid on the degradable part of the
database. Note that techniques used in traditional database management
systems can be used for logging and recovery of stable data.

There are many different approaches to logging; in the following we con-
sider an approach based on a combination of undo/redo logging. In our dis-
cussion we omit most details (they can be found in database textbooks [43]).

• Redo log. The redo log is traditionally used to implement durabil-
ity [43]. Using a redo log, tuples do not have to be written to disk
before a transaction commits, so that I/Os can be saved. Therefore,
the redo log includes the images and references (needed to implement
atomicity, see below) of tuples inserted by main transactions and the
transaction begin and commit statements. In the context of data de-
gradation, time-stamping the commit statements allows to replay, if
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necessary, the degradation side-transactions and to rebuild data and
index files.
To enforce ∆-durability, making sure that degradable data can only be
recovered during its retention period, at every data degradation step,
a degradation side-transaction should not only remove data from data
files and indexes, but also from the log files. However, sequentially
searching the log files and update those log files is expensive in terms
of I/O, and should therefore be avoided. We suggest to encrypt the
images of inserted tuples following the principle described in sec-
tion 4.3.2; at degradation time, the encryption key will be erased so
that the image in the log files cannot be decrypted anymore, effectively
removing the data. This principle is illustrated and further explained
in figure 4.17.
Now, the overhead of managing a redo log which is compliant with
∆-durability, induces only a negligible encryption overhead, and one
single I/O for overwriting the encryption key for each time interval
of size ρ for each tuple state.

• Undo log. The undo log is traditionally mainly used to implement
atomicity [43]. For durability we rely on the redo log (see above).
When updates are written to disk before the transaction commits
(steal strategy), the pre-image of the updated tuple will be appended
to the undo log. When the transaction rolls back, the undo log can be
used to write the original value of the tuples back to disk.
Degradation side-transactions are guaranteed not to roll back, so they
do not have to be contained in the undo log. Moreover, as described
in section 4.3.1, tuples are buffered in an insert buffer, even after
the main transaction commits (enforcing a no steal strategy). Hence,
inserted statements caused by main transactions also do not have
to be contained in the undo log. Because regular user transactions
are not allowed to update tuples (see the simplifications made in
section 4.1.5), it only needs to be possible to undo deletes—delete
operations by users themselves, not because of data degradation—in
case the delete is written to disk before the transaction commits.
The pre-image of the deleted tuples is already contained in the redo
log to be able to implement ∆-durability (see above). Hence, con-
taining a reference to the deleted tuple instead of the actual value
is enough to implement atomicity, since in case of a roll back, the
pre-image can be recovered from the redo log. This way, degradation
of the undo log is not needed.

To recover the database in case of a media failure, where all data in the
database has been lost (cold recovery), the redo log has to be used. The redo
log contains the complete history of main and regular user transactions, in-
cluding the time of commits. The redo log can be replayed in chronological
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order to rebuild the data files, indexes, and the degradation schedule, where
all tuples which cannot be decrypted are ignored. Of course, it is assumed
that the file storing the keys is not destroyed (using the same assumption
which holds for the log files themselves). It depends on the chosen storage
structure and strategy how the data will be restored. When in lazy mode,
for each tuple, the most precise tuple state for which an encryption key
is available will recovered, all other states will be ignored. When in eager
mode, all recoverable tuple states will be inserted in the corresponding data
files.

However, since the database system has not been active since the media
failure, no degradation steps have taken place on data which should have
been degraded given the degradation policy. Therefore, before returning to
normal usage, the database system must perform all necessary degradation
updates to make the database state compliant with the degradation policy.
To do this, the degradation schedule has to be used.

The undo log can be used to bring the database in a consistent state in
case there has been uncommitted transactions. This is also the case after a
database system failure where the data is still intact (warm recovery). Again,
the degradation schedule has to be used to perform delayed degradation
steps.

4.4 Revisiting the simplifications

In this section we discuss some of the simplifications we made to show the
impact of data degradation on traditional database management systems.
The simplifications we discuss now are simplifications on the implement-
ation level; simplifications taken at the model level, although they have
impact on the implementation, such as time triggered and uniformity, are
discussed in chapter 6. In this section we concentrate on the query and
update semantics. Note that many of the raised issues are left for future
work.

4.4.1 Query semantics

In section 4.1.5 we defined the semantics of queries over degraded data.
These query semantics are based on a least effort principle, or more specific-
ally: only the tuples in a tuple state set with equal or higher precision than
as defined in the purpose of the service are used to evaluate a predicate,
and the result is degraded to the asked precision. For both projection and
selection operation we could also have chosen a best effort strategy, each
resulting in different query semantics. We discuss the options briefly.

A best effort selection strategy uses all the data which is still (and longer)
available in the less precise states. The data in such states can be considered
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as probabilistic data [16] using a probability distribution which takes the
size of the domain into account. This additional information can be used
to evaluate the query predicate. A part of the returned data will then
be considered as uncertain data, which is up to the service provider to
handle correctly. This strategy makes only sense when assuming that the
probability distributions are not uniform, but based on the actual monitored
environment. However, this is not the objective of our data degradation
model in terms of privacy preservation, but can be used to increase the
amount of usability for services.

Example 3. The attribute age can be degraded from precision level Range1
to [Child,Adult] (or represented differently as [0,17], [18, . . .]). Given our
query semantics based on the purpose specification, the predicate age ≥ 16
would be evaluated only on the most precise set of tuple states. Using
probabilistic database query semantics, it would evaluate the query also
on the least precise sets, returning each tuple with age = Adult with a
probability of 1 attached to it, since each adult has an age > 16. The tuples
with age = Child will contain a probability lower than 1. Using an uniform
probability distribution this value would be 2

17 , but with a probability
distribution based on external information, this probability can be higher
or lower for each individual tuple.

A best effort projection strategy returns each tuple in the highest precision
available, instead of degrading the data to the required precision. The
consequence of such a strategy is that the result of a query is unpredictable
for the querying service; additional measures have to be taken to identify the
precision of the resulting tuples. Moreover, a best effort projection strategy
impacts the transaction synchronization protocol (see section 4.3.3). Not
only degradation side-transactions working on the oldest data in a view of
a regular transaction have to be synchronized, but also degradation side-
transactions on all other tuple state sets, to avoid inconsistent results of
subsequent queries within the same transaction.

4.4.2 Inserting in the past

An implicit simplification we made, is that a main transaction inserts a new
tuple always in the most precise tuple state set tss0. Hence, we assume that
a tuple starts its life-cycle when it enters the database. This assumption
may not always hold; firstly, there may be a delay between the monitoring
of an event by sensors, and the actual insert into an underlying database.
For example, records of monitored cars on a road may be first stored in
a sensor buffer and flushed to a database system at the end of the day. It
may be desirable to start the retention periods of the records at the time
they where created by the sensors, and not when they enter the database. It
might be that retention periods are shorter than a day, so that at the time
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the record reaches the database, it should have been degraded and thus be
inserted in a less precise tuple state set. Secondly, in distributed settings,
a database system might take over the task of another database system;
life-cycles should then simply be continued.

Inserting in the past adds additional complexity to degradation sched-
ules and management of encryption keys. More troublesome is the ordering
of the tuples on degradation time; many optimization are based on a strict
ordering of tuples so that multiple tuples can be degraded by one single
degradation side-transaction.

4.4.3 Update semantics

In traditional database management systems, a update is often treated as a
delete of the old value followed by an insert of the new value. In the context
of data degradation this is not a feasible approach, since retention periods
are bound to tuples; a updated tuple should continue its life-cycle, and
therefore cannot be considered as a new item. This behavior can only be
enforced if we allow ‘inserting in the past’, as described above. Otherwise,
a update should always result in a physical replacement of the value in
all data files (depending on the storage structures), update of the indexes,
and a record in the undo log for atomicity purposes and in the redo log for
durability purposes (see below).

An additional difficulty of updates is the question how to update a tuple
in a view in which tuples have been degraded to a lower precision. Consider
the following:

Example 4. A service declares the following purpose, and issues an update
statement to transfer all persons with a high salary to the Netherlands:

DECLARE PURPOSE Stat
SET PRECISION LEVEL Country for location, Range1000 for salary

UPDATE Person SET location = ’Netherlands’ where salary > 5000

The problem is to which value tuples have to be updated if they have
a higher precision than, in this case, ’country’. Simply updating high
precision values with low precision values is undesirable if multiple services
access the data, and leads to loss of data usability. A possibility is to restrict
updates to only the most precise data.
Allowing updates leads to a revision of the logging mechanism. To ensure
atomicity, updates have to be recorded in the undo log. To avoid degradation
of the undo log, a reference to the updated tuple can be used, in a similar
fashion as delete statements. In addition, the post-image of the updated
tuple has to be added to the redo log, encrypted with the same encryption
key as the original tuple.
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4.5 Conclusion

This chapter zoomed in on the technical aspects of the data degradation
model. Traditionally, design choices are focused only on finding a good
balance between insert and query performance, which is highly applica-
tion dependent. Data degradation adds a third dimension to the design
considerations; we offered a set of storage strategies and indexes suitable
for different application requirements, which all ensure ∆-durability and
are all designed to increase degradation performance. Adding some flexib-
ility to the retention periods results in major performance benefits; using
an ordering on degradation time, tuples can be degraded together, result-
ing in a decrease of costly random I/O operations. In chapter 5 we will
experimentally evaluate the proposed techniques using a prototype.

Data degradation puts not only requirements on storage structures and
indexes, also transaction management and recoverability are effected. We
proposed a synchronization protocol which takes benefit of the flexibility
in retention periods and showed that the number of conflicts between
degradation side-transactions and regular transactions can be minimized.
Moreover, we provided a logging mechanism using encryption techniques
so that ∆-durability and atomicity can be ensured using redo and undo logs,
even in the context of data degradation.
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5Experiments and analysis

As we have seen in the previous chapter, data degradation requires changes
to traditional database system techniques. We proposed new storage struc-
tures and index mechanisms, which all have their own characteristics when
it comes to insert, update, and query performance. In this chapter we
will—experimentally where possible—analyze the proposed techniques. To
do so, we have basically three options:

• Adapt an existing database kernel.

• Using analytical methods.

• Building a degradation-aware database system from scratch.
To test the performance of the various storage structures we chose to build
a (subset) of a database system from scratch. However, implementing a
database system from scratch is complex, and therefore we limited ourselves
to implement only what is minimally required to perform our experiments.
This will make it hard to compare the performance of our system with
traditional databases; however, this is not the objective of our study, which
is to analyze the design options of a database system with respect to data
degradation. Hence, we build a prototype implementation which we use to
experimentally test the storage structure. Besides, we present an analytical
study of the index structures.

The chapter is organized as follows. First, in section 5.1, we identify
the objectives of evaluating the storage structure and indexes and motivate
why we chose for our approach. Second, in section 5.2, we describe our
prototype implementation to give insight in the more important implement-
ation decisions, necessary to make a good interpretation of the test results
possible. Then, in section 5.3, we describe the test-setup and present the
results of our experiments. Finally, in section 5.4, we present an analysis of
the previously proposed index structures.
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5.1 Considerations

The most important consideration to make, is what the objectives of the
experiments should be. As we have seen in the previous chapter, data
degradation has a high impact on traditional database system techniques.
Although we proposed several techniques which are supposed to limit the
impact on performance as much as possible, the following two questions
are still important:

• What is the penalty of degradation when implemented in a traditional
database?

• Which application requirements lead to which choices of storage
structure and indexes?

Data degradation adds an additional load to the system, besides the usual
insert and query load. As there are insert-intensive database applications
and query-intensive applications, we introduce degradation-intensive ap-
plications. How much degradation-intensive an application (or service)
is, depends on the life-cycle policy it uses; for example, more degradation
steps lead to a more degradation-intensive application. Also the amount of
degradable attributes plays a role.

The storage structures and indexes we proposed all serve the purpose of
speeding up data degradation. Every strategy has its drawbacks in terms
of insert and query performance, where the most degradation-efficient
strategy is expected to be the least efficient in terms of insert and query
performance. Hence, the objective of our performance study will be to
outline the performance penalties of each storage structure with respect to
insert and query performance, and to give ‘rules of thumb’ for choosing the
best strategy for various application requirements.

Answering the first question will require to adapt an existing database
system kernel, which we decided not to do, as explained in the follow-
ing. Nevertheless, to show the feasibility of data degradation, adapting an
existing database system kernel remains important future work.

5.1.1 Adapting an existing database system kernel

The advantage of choosing to adapt an existing database system kernel is
that we can show the feasibility of implementing data degradation as a plug
in for traditional database systems such as MySQL, Oracle, PostgreSQL,
et cetera. When we have such an implementation, we can easily indic-
ate the performance loss due to data degradation, and show the benefits
of our degradation-friendly storage structures under different conditions.
Moreover, we get all optimizations and components which don’t need to be
adapted for data degradation for free. This way we can better indicate the
actual performance penalty introduced by data degradation.
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All common database management systems support a stored-procedure
language to be able to add new functionality. Such a language can be used
to write the procedures necessary to degrade the data. We can, for example,
implement a degradation schedule which triggers transition functions de-
grading the data on the correct time. However, those languages only operate
on a high level (such as sql does), whereas, as we have seen in the previ-
ous chapter, data degradation requires at least a new implementation of
the storage structure, such that write operations can be enforced and data
can be correctly degraded. Moreover, because stored procedures cannot
be used for low level operations, the necessary adaptations to transaction
mechanism and logging cannot be implement with stored-procedures only.

The requirement of full control over all write and read operations makes
that we did not choose for the option of adapting an existing database sys-
tem kernel. Without this control, we cannot implement each data structure
in such a way that a fair comparison between the storage structures is pos-
sible. To illustrate, it is hard to efficiently rebuild a database system kernel
to support a fragmented storage structure while it has been designed to
store data in a clustered way, and vice versa.

Moreover, to be able to implement data degradation using complete new
storage structures—not only one, but at least four, one for each degradation-
friendly structure we proposed in section 4.3.1—we need full understand-
ing of and insight in the implementation details of an existing database
system kernel, which we unfortunately have not. Moreover, the database
system kernel should be modular enough to replace the storage structure.
For extensive research on the feasibility of using one of the well-known
open-source database systems such as MySQL, PostgreSQL and Derby, or
one of the less well-known systems H2 and MonetDB, we refer to Math-
ijssen [108]. Although arbitrary, the outcome of this research was that the
examined database systems show too much added complexity in their phys-
ical layer to be feasible for us to consider this option, given the available
amount of time and available resources.

5.1.2 Using analytical methods

Due to time-constraints, we were not able to build a prototype which
supports all the techniques discussed in chapter 4. Therefore we decide
to analytically evaluate the index structures. For index structures this is a
feasible approach, since the amount of parameters and dependencies is less
than that of, for example, the storage structure.

5.1.3 Building a database system from scratch

Given the complexity of adapting an existing database kernel, and the
limits of analytical methods to evaluate all our techniques, the only option
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remaining is to build a database system from scratch. This option gives us
two advantages:

• We have full control over all implementation details, making it pos-
sible to implement our proposed techniques to their full extent.

• We can make a fair comparison between all implemented techniques.
Building a database system which can compete with well-developed tradi-
tional database systems is not possible within a limited amount of time, and
therefore we have to limit ourselves to implementing only the necessary
components needed for a research platform which makes it possible to
evaluate the storage structures and where possible in the future the index
techniques. We describe this platform in the next section.

5.2 Prototype implementation

In the following we discuss the prototype we used to test and compare the
performance of the storage structures. The prototype has been implemented
with contributions by my Master student Mathijssen [108]; the source and
executables can be found at our website [122].

5.2.1 Architecture

Our prototype consists of four components. Figure 5.1 gives an overview of
those components. In short, sql insert and schema definition statements are
communicated through an interface, which parses them. For a schema and
the corresponding lcp statement (describing the degradation policy), the
strategy logic component builds—depending on the used storage strategy—a
set of sub-relations containing either degradable or stable attributes (or
both). It attaches, for each degradable attribute, transition definitions to
each relation. Those transition definitions contain information about how
and after which delay an attribute has to be degraded. Then, for each sub-
relation, the storage engine will create a data file, including dedicated insert
and update buffers. The degradation manager will process the transition
definitions, and at given times send update statements to the storage engine.

Each individual component is explained in more detail in the following.

Storage engine

The storage engine is responsible for the actual storage, fetching and updat-
ing of data. Storage of data is page-based and follows as much as possible
traditional database system storage techniques, and the techniques for de-
grading the data are implemented as described in the previous chapter
(section 4.3.1). We recall here some of the important techniques which are
relevant for a better understanding of the results of the experiments.
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interface

strategy logic

storage engine
degradation

manager

Figure 5.1 Schematic overview of the prototype, where arrows denote the direction of the
flow of operations. First, the interface is responsible for parsing SQL insert and queries,
and schema definition statements. Second, the strategy logic component transforms the
original relation into sub-relations, depending on the chosen strategy. It attaches transition
definitions for each degradable attribute in a sub-relation. Third, the degradation manager is
responsible for executing those transitions at the correct time on the correct tuples. Finally,
the storage engine is responsible for storing, updating and fetching the data when requested
by either the strategy logic or the degradation manager.

• Buffering. For each data file there exists one insert, update and query
buffer. The reason for keeping distinct buffers is simplicity; pages in
each buffer are there for only one purpose, and can be treated as such.
For examples, pages in the select buffer never have to be written back
to disk when space has to be freed in the buffer. The insert buffer can
be flushed to disk when it is full, and update buffers can be flushed
to disk after each degradation step. However, before fetching a page
from disk, the buffer manager will check if the requested page already
exists in one of the other buffers, and move the page to the assigned
buffer.

• Page alignment. Delete and update ranges can be aligned on page
borders. This way, all tuples of a page will be updated or deleted at
the same time, saving I/O cost. To degrade all tuples in a page to a next
state, a page has to be read and written only once. The consequence
is that some tuples might get degraded earlier than necessary. This
might be not desirable behavior when insert rates and/or retention
periods are so small that only a few tuples need to be degraded, and
thus relatively many tuples are degraded too early. However, in such
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cases performance will not be an issue anyway, making alignment of
pages irrelevant.

• Pre-fetching. Pages are numbered with their offset in the data file.
Hence, the physical address of a page is a combination of the name
of the data file and the offset from the beginning of that data file.
Now, if a page with offset x is requested, and it is not present in
one of the buffers, it will be fetched from disk together with page
x + 1,x + 2, . . . ,x + n− 1, where n is a parameter, in the following called
the I/O size. If those pages don’t fit in the buffer, the buffer will be
flushed. Hence, the I/O size used for a particular buffer can never be
larger than the size of that buffer (counted in number of pages). This
is an applicable and feasible strategy, because data is stored sorted on
insert time, and will be degraded in the same order.

• Deletes. If we would not use page alignment (see above), situations can
arise where only a subset of the tuples in a page need to be removed
during one degradation step. However, all operations read and write
full pages; it is not possible to overwrite individual tuples directly on
disk with dummy values, such that they are removed. Hence, to delete
tuples from such a page, the full page needs to be read to be able to
‘save’ the tuples which should not be deleted. The tuples which need
to be deleted will be removed from the page in memory; the page can
then be written back to disk, overwriting the original page.
Thanks to page alignment, all tuples will be deleted without first
reading the page which contains those tuples, because we know that
all tuples can be deleted. To perform the delete, an empty page will
be created, which will overwrite the old data in the data file.

• Locking. For the sake of simplicity, and to make sure there are no
conflicts, each transaction is performed in isolation. In our prototype
a transaction is either:

– An insert of a single tuple. Depending on the used storage
strategy, a tuple might need to be inserted into more than one
data file. The transaction ends when the tuple has been inserted
in all its data files.

– Degradation of a range of tuples from one single sub-relation,
initiated by the degradation schedule. If tuples from two sub-
relations have to be degraded at the same time, the degradation
will be performed by two subsequent transactions.

– A single query; the transaction ends when all data is fetched and
processed from all required data files.

Once the lock is acquired, only one type of operation will use any
buffer at the same time, and will release the lock and resources after
full completion of the transaction. To enforce degradation, all writes
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to pages will need to be committed to disk. Therefore we flush the
update buffer to disk after the degradation transaction finishes. No
matter which strategy we use, degradation of a range of tuples will
always be performed on only one data file, and thus in practice only
one update buffer will be used at the same time. This makes sharing
of buffers possible.
Note that we did not implement the transaction synchronization pro-
tocol discussed in section 4.3.3. As we have seen, a strict locking
mechanism as used in our prototype is not necessary in practice.

• Fsync. The prototype has been implemented in Java, which means
that the code runs in a virtual machine. Hence, the prototype cannot
directly communicate with the hardware and the disk in particular.
For memory management and writes to the disk it has to rely on the
operating system. However, to enforce that data is directly written
to disk, and that the writes are not buffered in a operating system
cache, Java supports the fsync system call. Still, we have to rely on the
operating system for the actual implementation of the placement of
data, and whether or not blocks are written sequentially to disk or
not.

Strategy logic

The strategy logic component is responsible for three things:
• To transform an original relation R into sub-relations based on the

chosen strategy (figure 5.2).

• To transform insert statements.

• To rewrite a query on R into sub-queries, and reconstruct the result.
In section 4.3.1 we discussed a baseline approach and four other data
degradation-friendly approaches, of which two where lazy and two where
eager. In fact, the baseline approach is also a lazy approach. To be able to
compare the clustered and fragmented eager with a baseline version, we
also implemented an eager version of the baseline strategy. In the following
we refer to the baseline approaches as none lazy and none eager, where
none is suggestive for “neither clustered nor fragmented”.

The strategy logic component will transform the original relation into
sub-relations for each strategy. For example, consider a relation R(S,A,B)
and the lcp we used before in the previous chapter (see figure 4.2); then R
is transformed into sub-relations with the following schema’s:
NONE LAZY One relation containing both stable and degradable attributes

⇒ {S,A0,B0}
NONE EAGER For each tuple state a sub-relation containing all attributes

⇒ {S,A0,B0}, {S,A0,B1}, {S,A1,B1}, {S,B1}
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R(S,A,B)

R′(S,A0,B0)

DFR

a NONE LAZY

R(S,A,B)

R′1(S)
R′2(A0)

R′3(B0)

R′4(A1)R′5(B1)

DF1
DF2

DF3

DF4DF5

b FRAGMENTED EAGER

Figure 5.2 Decomposition (according to the LCP of figure 4.2) of an original relation R
with a stable attribute S and two degradable attributes A and B for the NONE LAZY and
FRAGMENTED EAGER strategies. With NONE LAZY the original relation stays intact, A0 and
B0 denote that newly inserted tuples will initially be stored (only) in their most accurate state.
For the FRAGMENTED EAGER strategy, the relation is split into 5 relations, all containing only
one attribute. In relation R′4 and R′5, the attribute values will first be degraded to state A1
and B1 respectively before they are inserted.

CLUSTERED LAZY One relation for all stable attributes, one relation for all
degradable attributes⇒ {S}, {A0,B0}

FRAGMENTED LAZY One relation per degradable attribute, one relation for all
stable attributes⇒ {S}, {A0}, {B0}

CLUSTERED EAGER One relation per tuple state containing only the degrad-
able attributes, one relation for all stable attributes ⇒ {S}, {A0,B0},
{A0,B1}, {A1,B1}, {B1}

FRAGMENTED EAGER One relation per attribute state, one relation for all stable
attributes⇒ {S}, {A0}, {B0}, {A1}, {B1}

Each sub-relation will be assigned its own data file, as pictured in figure 5.2.
When an insert statement arrives it has to be split into multiple insert
statements, one for each data file. For the eager strategies, a transformation
function has to be called to pre-process all attribute states. In our prototype,
such a function can be implemented by either a generalization tree or by a
generalization function.
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For example, when the strategy is fragmented eager, the original insert
statement on relation R will be split into five statements, one for each
sub-relation. The original values a and b will first be degraded using
transformation functions f and g respectively:

insert into R values (s,a,b) ⇒

insert into R′1 values (s)

insert into R′2 values (a)

insert into R′3 values (b)

insert into R′4 values (f (a))

insert into R′5 values (g(b))

Finally, we choose in our prototype to let a query always return the most
accurate version of a tuple. This means that the query select * from R
will be translated into a union of queries which scan all tuple state sets.
It is important to note that following this semantics, a tuple will never
be fetched more than once, representing the correct costs of a sequential
scan for any strategy. Strictly following the query semantics described in
section 4.1.5 would require to also apply a transformation function to each
produced tuple. This is not necessary for analyzing the performance of the
storage structure, and is therefore omitted.

Because a relation R is now possibly stored in multiple data files, queries
on R have to be re-written, where each strategy needs a different re-write
rule, so that no more tuples are fetched than required to produce the result.
This is also a task for the strategy logic.

Interface

Our prototype accepts basic sql-like statements to define a schema and
to insert data. As an extension to the standard sql language we added a
syntax to define degradable attributes and a policy. For example, to define
a schema R(S,A,B) and our running example policy:

1 CREATE TABLE R (S 10, A 20 degradable_tree , B 20
degradable_function)

2 CREATE LCP R
0 ,0;10000;0 ,1;15000;1 ,1;10000; -1 ,1:15000: -1 , -1

In the first line we create a table named R and three attributes. The
number behind the attribute name defines the fixed size of the attribute
(although the prototype supports variable-size attributes). The keywords
degradable_tree and degradable_function indicate that the attributes A and B
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will be degraded with a generalization tree and function respectively. Those
trees and functions are implemented elsewhere, and the tree (or function)
can be identified given the attributes name.

The second line defines the life-cycle policy. Each pair indicates the
attribute state of each attribute, followed by the tuple state duration (in
milliseconds). The number −1 denotes removal of the attribute. The proto-
type currently supports only one table and one policy at a time, which is
sufficient given the purposes of our experiments.

Insert statements are specified with standard sql syntax and can be
written in a script file which will be read by the interface. The interface will
read the script file line by line, and artificially waits between each line such
that a fixed insert rate is simulated. To support precise insert rates, it takes
into account that this insert rate cannot always be reached due to temporary
high loads (for example because of a degradation run). When some inserts
are delayed, the following inserts will be processed with a higher insert rate
to make up the lost time.

Degradation manager

The degradation manager keeps track of the degradation schedules, and
triggers degradation of data with intervals of size ρ ×∆, as suggested in
section 4.3.1.

Each degradation schedule is a table (kept in ram) containing entries
of the form 〈n,row offset〉, where n is the nth interval of size ρ ×∆ since the
start-up of the database. The row offset points to an offset in the data file,
which is the position of the last tuple which needs to be degraded.

When the degradation schedule is triggered—at the end of each time
interval—an update statement or a delete statement will be sent to the
storage engine, depending on the chosen strategy, containing the range of
tuples to be degraded. Note that the storage engine might decide to extend
this range to perform page alignment as discussed before. The degradation
schedule only acts on a logical level, the actual degradation is performed in
the storage engine.

5.2.2 Capabilities and non-capabilities

Although our prototype supports the storage and retrieval of data, and
most important, degradation of data using six different strategies, it has a
number of shortcomings. We first list what we can do with our prototype:

• Implementation of storage structures based on heap files using six
different strategies.

• Implementation of degradation schedules directing the timely degrad-
ation of data, including support of the ρ-timeliness property.
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• Support of generalization trees and functions to specify how data
should be degraded.

• An interface to easily create schemas with a variable number of stable
and/or degradable attributes.

• Support of life-cycle policies with which tuple states and retention
periods can be defined.

• Possibility to execute a sequential scan of tuple state sets.
Moreover, the prototype has been designed as a research platform. For this
purpose, it supports:

• Collection of runtime statistics such as number of random and se-
quential I/Os, total time needed to execute an I/O operation, et cetera,
all per type of operation.

• Support of a fixed insert rate.

• Possibility to configure the system in detail; for example, it is possible
to configure buffer sizes, page sizes, I/O size, whether or not buffers
need to be flushed, page alignment, and many other parameters.

Although the prototype has been implemented such that it easily can be
extended with more features, in its current state it cannot be considered as
a full-fledge database system. That has never been the purpose of building
this prototype. As a consequence, it misses many components which can
be found in existing database systems, which makes that the performance
of this prototype cannot be compared with such systems. However, in
the previous chapter we described many techniques which need to be
implemented in order to fully support data degradation in practice. Those
techniques are:

• Transaction control. The prototype uses strict isolation of transactions,
to make sure that the storage structures are tested correctly. We
are not able to evaluate the synchronization protocol described in
section 4.3.3.

• Logging. Traditional database systems support logging for durability
purposes. Our prototype lacks a logging mechanism. Hence, we also
did not implement the encryption techniques proposed to manage
data degradation from log files.

• Indexes and query optimization. Due to a lack of time indexes are
currently not supported, although the prototype is modular enough
to support access paths other than sequential scans in the future.

5.3 Degradation-friendly storage structures

The difficulty of our performance analysis compared to traditional perform-
ance analysis is the additional dimension introduced by data degradation.
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Whereas traditionally a balance has to be found between query and insert
loads, data degradation adds an additional load to the database. As we will
see, techniques to optimize degradation performance will lead to a decrease
of insert and/or query performance. Application requirements, such as the
number of stable and degradable attributes, the number of degradation
steps and retention periods determine the degradation load.

As explained in the previous section, the current state of our prototype
has limitations and can therefore only be used to extensively test the stor-
age structure. We focus the experiments on insert and degradation cost.
To include the cost of query overhead due to fragmentation, we perform
sequential scans on the data which show the cost of the reconstruction of
tuples. For more realistic queries, especially point queries, and thus to
analyze the access paths, we will use a theoretical analysis presented in
section 5.4.

In section 4.3.1 we introduced a set of storage structures, which are derivat-
ives of a storage structure based on heap files, as an alternative to traditional
storage structures. In this section we will investigate the characteristics
of each derivative of the storage structure under different conditions. We
will use our prototype to perform a set of experiments. The final objective
of these experiments is to be able to indicate the best choice of storage
structure for specific application requirements.

In the following, we will study the behavior when varying a set of
parameters, one by one. This means that for each parameter we will look
to how well the cost—especially the inserts and degradation cost—scales
when we increase, for example, the number of degradation steps. After
studying those parameters, we will form a general picture and provide
conclusions, in section 5.3.5.

5.3.1 Test setup

The parameters we will vary to test the storage structures are:
• Number of stable attributes. The baseline approach suffers from

the fact that many data have to be transferred from disk at each
degradation operation. We expect that the clustered and fragmented

storage structures perform better when the number of stable attributes
grows.

• Number of degradable attributes. More degradable attributes means a
higher degradation load. We expect that the strategies most focused
on decreasing the degradation cost are able to scale better on a higher
degradation load, but will also suffer from the increased insert cost.

• Number of degradation steps. The fragmented eager strategy creates
a data file for each attribute state, and the clustered eager strategy
creates a data file for each tuple state. Hence, for those eager strategies,
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we expect that the insertion cost will grow proportionally to the
number of degradation steps while lazy strategies are not influenced
by this parameter (with respect to inserts). However, eager strategies
are expected to be more efficient when degradation loads increase.

Some system properties have a high impact on the performance of data
degradation. The most important property is the number of pages which
can be sequentially fetched from disk after having randomly accessed the
initial page. We name this property the I/O size. This property is tightly
bound to the buffer size; the system can only benefit from a large I/O size
if the to be flushed buffer is large enough. Furthermore, a large I/O size
is only useful when there are enough pages to be flushed to disk at once.
With respect to data degradation, this depends on several factors, such as
the insertion rate, retention period ∆, and ρ.

The degradation cost highly depends on the amount of data which has
to be processed given each storage structure strategy. The clustered and
fragmented storage structures are designed to lower the amount of data
processed during each degradation operation. The amount of random I/O
needed to fetch and write the data to disk mainly determines the total
cost; since sequential I/O cost is relatively low compared to random I/O
cost, its contributes much less to the total cost. If the I/O size and buffer
size is large enough to fit all data required for the baseline approach, the
higher degradation cost only comes from the higher sequential I/O cost.
Hence, to make a good comparison possible between the strategies, by
clearly reflecting and stressing the cost of disk based data processing, we
limit the buffer size such that only a small portion of the to be degraded
pages fits in the buffer.

Another consideration is whether or not we specify the amount of avail-
able buffer space per file or per storage structure. Although easier to imple-
ment, the first option would mean that strategies using more data files can
use more memory, which might look unfair at first glance. Actually, in gen-
eral, fragmented strategies will not benefit from the additional buffer space.
Although each buffer is as large as the single buffer used by the clustered
strategy, also less data needs to be processed per buffer, and therefore the
additional space is useless. This can be concluded from figure 5.3. Besides,
all transactions in our prototype are synchronized, so that no more than one
degradation process can run at the same time, and thus only one update
buffer will be used at a time. Therefore, and for simplicity reasons, we
chose the option to specify buffer space per data file.

Unless specified otherwise, we will use the values for the various para-
meters as shown in figure 5.4 throughout the experiments. The choice for
those parameters is more or less arbitrary, every value for each parameter
can be more or less beneficial for a certain strategy. It is therefore important
to notice that each outcome of each test with respect to the comparison of
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Figure 5.3 These plots show the cost for degradation given the I/O size (and a buffer size
which is equal to the I/O size) for the different strategies. Since the NONE LAZY strategy
processes the most data per data file, it benefits much from increasing I/O sizes until the
I/O size is 14. Similarly, a strategy such as FE benefits until the size is 8. With this I/O and
buffer size, all the to be degraded data fits in the buffer and can be fetched from disk using
only one random I/O. These numbers are highly dependent on the chosen insert rate (here
250 inserts per second), number of stable attributes (3) and degradable attributes (3), ρ,
retention periods, et cetera.
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Parameter Value
Page size (p) 4096 bytes
IO size (y) 16 pages
Buffer size (updates) (bu) 5 pages
Buffer size (inserts) (bi) 5 pages
Buffer size (selects) (bs) 16 pages
Approximate attribute size 15 bytes
Random I/O weight (α) 200
Inserts (i) 50000 tuples
Insert rate (x) 250 inserts per second
Degradable attributes (d) 3
Stable attributes (s) 3
Retention period (∆) 10 seconds
Steps per attribute (a) 2
Tolerance (ρ) 10%

Figure 5.4 Parameters as used in the experiments. The update buffer size is chosen so
that the data processing cost is still manifest, even given the tolerance ρ and the short
retention period ∆ at an insert rate of 250 inserts per second. The insert rate is slow enough
to be supported by all strategies under all conditions as used in our experiments.

the performance of strategies, is an outcome on its own. From each test
the only thing we can conclude with high confidence is the effect of the
changing value of a parameter on the performance of a strategy compared to the
performance of the other strategies under the same conditions. For example,
we expect that a high number of stable attribute is bad for the baseline
approach (none strategies); this effect will be magnified when the number
of degradation step increases. When the outcome of an experiment with
variable degradation steps shows that the baseline approach performs less
than the other approaches, this might be the case because in that particular
setting the number of stable attributes is high. Nevertheless, we assume
that the choice of default parameters is fair enough to draw reasonable
conclusions.

For the experiments we construct a life-cycle policy with d degradable
attributes, with for each attribute one degradation step. The total retention
period of a tuple is (d + 1)×∆—see figure 5.5. This period is divided into
a period i ×∆ for the state duration of the attribute state Ai

0, and in the
remainder, (d + 1 − i) ×∆, for state Ai

1. So, after all degradable attributes
have been degraded, all attributes will be removed at the same time.

The final consideration is what to measure, and for how long. As dis-
cussed earlier, random I/O contributes most to the overall cost of database
operations, followed by sequential I/O, and to a smaller extent, the CPU
cost. However, although our prototype is implemented—where possible—
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Figure 5.5 The tuples undergo d updates before they are fully removed, where d is the
number of degradable attributes. Each tuple state duration is ∆ seconds.

using traditional database techniques, it lacks optimizations which might
be found in well-developed databases, and is written in Java which uses
a virtual machine, adding additional computational overhead. Moreover,
although the prototype can force the operation system to pass the I/O re-
quests to disk, the actual execution and cost are hard to control. Hence,
measuring time can only give an indication of the performance, and is
not fully reliable. To overcome this, we count the number of random and
sequential I/O and multiply the random I/O with a weight, to simulate the
actual cost of each operation. To be precise, random I/O = α × seq. I/O; we
assume that random I/O are approximately 200 times more expensive than
sequential I/O (α = 200).

For each run of an experiment, we count the amount of random and
sequential I/O needed to execute a test script. A test script consists of a
number of sql insert statements with synthetic data, a statement specifying
the schema containing degradable and/or stable attributes, and the life-
cycle policy. After the database has been created, and the degradation
schedules initialized, the insert statements will be executed one by one, with
a constant insert rate, until all degradation schedules are active, namely
after (d + 1) × ∆ seconds. At that moment, the database has reached its
maximum size, so we start counting the I/O needed to insert and degrade
tuples. We continue inserting tuples from the test script (starting at the
first insert statement) until each insert statement has been processed. At
that moment we stop counting and stop the run. Hence, we count the I/O
needed to insert i tuples with an insert rate of x tuples/sec, and the amount
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Figure 5.6 Schematical overview of an experiment run. At t0, the first tuple will be inserted
and the first entry will be placed in the degradation schedules. At t1, the first tuple is at the
end of its life-time and will be removed from the database. At this moment, all tuple state
sets have their maximum size (constant insert rate). From this point, i additional tuples will
be inserted. This process will be finished at t2. Statistics will be collected during the interval
[t1, t2], because during this interval all degradation processes are active. The insert rate is
x (tuples/sec).

of I/O needed to degrade the previously inserted data during a period of i
x

seconds. The process has been pictured in figure 5.6.

5.3.2 Varying the number of stable attributes

The clustered and fragmented storage structures are especially designed
to limit the amount of data which has to be transferred for each degradation
operation; see section 4.3.1. The less data to be transferred, the more
efficient the operation. Therefore, the first optimization proposed was to
detach the stable attributes, and store them in a separate data file. In the
following experiment, we vary over the number of stable attributes.

Expectations

We expect to observe that the clustered and fragmented storage structures
perform better than the baseline approach with respect to degradation, and
that the performance gain is proportional to the number of stable attributes.
Moreover, we can give a first indication of the performance of each strategy
compared to the other strategies. We expect that the results verify the
preliminary comparison we presented in section 4.3.1, figure 4.8.

Results

In figure 5.7a we see that the insert cost for each strategy grows linearly
with equal gradient, except for the none eager strategy. The reason for the
higher gradient is that the cost for storing one additional stable attribute is
multiplied by the number of degradable attributes, because each data file
created for each tuple state will also contain the stable attributes.
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The cost for degradation (see figure 5.7b) is constant with respect to the
number of stable attributes for the clustered and fragmented strategies,
while it is linearly increasing for the baseline strategies. The reason for
this is, that for the clustered and fragmented strategies, the data file
storing the stable attributes remains untouched during each degradation
operation, and therefore the stable attributes don’t contribute to the cost of
degradation.

If we relate insert and degradation costs to each other by dividing them
(see figure 5.8a), we see that degradation takes a smaller part of the total
cost when the number of stable attributes increases. In this figure, a ratio
equal to 1 means that insert cost is equal to the degradation cost, as is
more or less the case with the none eager strategy. For the none lazy

strategy, we see that the degradation cost takes a much higher share of the
total cost, although this ratio stays constant, no matter what the number of
stable attributes is. Also for the clustered lazy strategy, the degradation
cost is higher than the insert cost. Nevertheless, since the degradation
cost is constant, the gap is getting smaller when the number of stable
attributes increases. For the eager strategies, the insert cost is higher than
the degradation cost. The insert cost increases when adding more stable
attributes, whereas the degradation cost stays constant. Note that this figure
can not be used to compare the performance of each strategy to the other
strategies.

Although we are aware that we should not draw a conclusion only
based on a particular, arbitrary set of parameters, we added insert and
degradation costs together, and for each strategy, relate those costs to the
none lazy strategy. This gives at least some insight in the performance of
each storage structure, taking both inserts and degradation into account.
Query performance is left out of consideration here; we concentrate on
insert and degradation performance.

In figure 5.8b we group the cost for each number of stable attributes
together per strategy, and in figure 5.8c we group the cost for a particular
number of stable attributes for each strategy together. If the ratio is 1, the
total cost of inserts and degradation for a strategy is equal to that of the none
lazy strategy. If the ratio is smaller than 1, the cost is lower and thus the
performance better. We see that the clustered and fragmented structures
perform at least as good as, but in most cases better than, the none lazy

strategy. Especially when the number of stable attributes increases, the
clustered and fragmented strategies benefit from separating stable and
degradable attributes. Using these plots, we also observe that the cost
comparisons between the clustered and fragmented strategies are not
related to the number of stable attributes.
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Figure 5.7 Insert, degradation and sequential scan cost with varying number of stable
attributes. For the CL,CE,FL and FE strategies, the degradation cost remains constant (see
plot b). The insert and scan cost increases proportional for each strategy (see plot a and c).
An exception is the NE strategy (see plot a), where the insert cost increases faster.
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Conclusions

When we only vary the number of stable attributes, and use the paramet-
ers listed above, the fragmented eager strategy performs best, thanks to
its degradation performance. This confirms the prediction we made in
section 4.3.1. However, the query cost and the insertion cost do play an
important role; we do not take query cost into consideration, although
we can see that for sequential scans, as expected, the fragmented eager

strategy has the highest cost (see figure 5.7c).

5.3.3 Varying the number of degradable attributes

By varying the number of degradable attributes we increase the degradation
load; each additional degradable attribute adds one additional degradation
step to the life-cycle policy.

Expectations

We expect that for the different types of storage structures, varying the
number of degradable attributes has the following consequences:
nl Adding a degradable attribute has the same effect as adding a stable

attribute: the amount of data to be transferred at each degradation
step increases. Hence, besides the additional cost of the additional
degradation step(s), the cost of all other steps also increases.

ne The effect is the same as for the none lazy strategy: more data has
to be processed per degradation step. Moreover, the additional tuple
states lead to additional data files, leading to an increase of insertion
cost, which is more than linear.

cl The increase in tuple size is the same as for the none lazy strategy,
and therefore the increase in degradation cost has the same cause.
The increase of degradable attributes leads to an increase of cost per
degradation step.

ce As for none eager, the insert cost will increase fast because of the
additional redundancy caused by an additional degradable attribute.
Also degradation time will increase in a similar fashion as none eager.

fl Because of fragmentation, an additional degradable attribute has no
effect on the cost of each degradation step. The increase of degradation
cost is only due to the additional degradation steps. The cost of inserts
will increase faster than for none lazy and clustered lazy, since an
additional degradable attribute requires an additional data file, and
thus additional random I/O.

fe Again, the additional cost for degradation only comes from the fact
that there are more degradation steps to be executed. An additional
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Figure 5.8 Comparison of strategies with respect to insert and degradation cost, when not
taken the query cost into consideration.
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degradable attribute has no effect on the cost per degradation step. For
insert time, the negative effect of an additional degradable attribute
is multiplied by the amount of degradation steps per attribute; each
degradation step requires an additional data file. Therefore the insert
cost will increase faster than for fragmented lazy.

Results

If we look to figure 5.9a we see that the none eager strategy suffers most
from the additional degradable attribute with respect to the insert cost.
Again the none lazy performs best when it comes to inserts, which is as
expected. The clustered lazy performs slightly less than none lazy due
to the additional random I/O required to store the stable attributes, but
the gradient with which the cost increases is equal to that of none lazy.
The fragmented lazy strategy performs relatively good with respect to
inserts, with performance scaling less good with the number of degradable
attributes than none lazy and clustered lazy, but better than fragmented

eager, and much better than clustered eager and none eager.
As expected, the none lazy strategy performs worst with respect to data

degradation, and the fragmented eager strategy performs best, and also
scales best, together with the other fragmented strategy. The clustered

eager and none eager strategies perform good too, but scale less good than
the fragmented lazy strategy, making the latter the better choice when the
number of degradable attributes increases. The clustered lazy strategy
performs relatively bad, but at least better than none lazy.

As said before, combining inserts and degradation (figure 5.10b and
figure 5.10c) is dangerous, although it gives some indication of the perform-
ance given those two dimensions. We see that, with the settings we used
here, the fragmented eager strategy is the best all-round strategy (thanks
to its degradation performance), followed by clustered eager (when the
number of degradable attributes is small) and fragmented lazy (when the
number of degradable attributes is higher).

For the fragmented eager strategy, the ratio between inserts and de-
gradation cost stays more or less constant given the number of degradable
attributes, indicating that those strategies scale in a similar fashion with
respect to the insert and the degradation cost. Especially for the lazy

strategies, they scale less good with respect to degradation cost than to the
insert cost. This is mainly because additional degradable attributes have
only a limited effect on the insert cost, while it has a severe effect on the
degradation cost. See figure 5.10a.
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Figure 5.9 Insert, degradation and sequential scan cost with varying number of degradable
attributes.
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Figure 5.10 Comparison of strategies with respect to the insert and degradation cost.
Interesting to see is that the LAZY strategies scale better with respect to the insert cost
(insert cost increases slower than the degradation cost), while for the EAGER strategies the
degradation and insert cost increase proportionally (see plot a). The FRAGMENTED EAGER

strategy performs also best if we take inserts and degradation together (plot b), followed
by the FRAGMENTED LAZY strategy, but only when the number of degradable attributes
increases.
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Figure 5.11 The tuples undergo d× a updates before they are fully removed, where a is
the number of degradation steps per attribute. Each tuple state duration is ∆ seconds, there
are two degradable attributes (d = 2).

Conclusions

As expected, the lazy strategies scale better in terms of insert cost, and
the eager strategies in terms of degradation cost. When the number of
degradable attributes increases, and thus the degradation load gets higher,
fragmented eager is the best strategy.

5.3.4 Varying the number of degradation steps

Another way to increase the degradation load is to increase the number
of degradation steps per attribute. However, the consequences for the
different strategies will be different, especially for the eager strategies. In
the following we will investigate the performance of the different strategies
with a life-cycle policy as shown in figure 5.11, with d = 2 degradable
attributes, and a degradation steps per attribute. We let a vary over [1 . . .10],
where a = 1 indicates that both degradable attributes will be removed after
retention period ∆, without undergoing a degradation step.

Expectations

As is the case with increasing the number of degradable attributes, by
adding degradation steps the number of tuple states increases. Hence,
the expectation is again that the clustered and fragmented strategies will
perform better than the baseline strategies, because the cost per degradation
operation is lower. Adding a tuple state results for all eager strategies in an
additional data file, which has an immediate effect on insert performance.
More precisely, the foreseeable consequences for each strategy are:

nl Since the strategy is lazy, and thus no future states are pre-computed,
the number of degradation steps will not have any influence on insert
performance. Degradation performance will decrease fast because of
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the relatively high cost per degradation step, so any additional step
will have a severe effect on degradation performance.

ne For each tuple state a data file will be used, so for two degradable at-
tributes, adding a degradation step results in two additional data files.
The none eager strategy causes the highest amount of redundancy,
so insert cost will increase fast. Degradation cost per degradation
step will remain stable, so the only decrease in performance will be
because of the additional steps themselves.

cl As with all lazy strategies, insert performance will not be influenced
by additional degradation steps. Degradation performance will de-
crease, similar to the none lazy strategy, though slightly less due to
the separation of stable and degradable attributes.

ce The strategy is eager, and therefore insert performance will decrease,
though less severe than for the none eager strategy, because there
is less redundancy. Degradation performance will be better than the
previous strategies.

fl Fragmentation itself will not lead to a decrease of performance, since
the amount of fragments is only dependent on the number of degrad-
able attributes. Hence, insert performance will be constant for all
numbers of degradation steps. Also here the degradation performance
per degradation step is independent of the number of degradation
steps.

fe For each attribute state there will be one data file, so insert perform-
ance will decrease with each additional degradation step. Since there
is no redundancy, insert performance will decrease less fast than for
the other eager strategies. The strategy should perform best in terms
of degradation performance.

In this experiment, we include the limited retention case, where the number
of degradation steps a is one, indicating that all data will be immediately
removed after the retention period ∆. For this case the benefit of the eager
strategies compared to the lazy strategies will be negligible, since there is
no need for read operations to degrade the data. Moreover, there will be no
benefit for fragmentation, because all data has to be removed at the same
time, making clustered strategies a better choice.

Results

What we can see in figure 5.12a is that for the lazy strategies indeed
the insert performance is not related to the number of degradation steps,
and stays constant. The insert cost increases for the eager strategies, the
none eager strategy performs worst, followed by clustered eager and
fragmented eager. The fact that none eager and clustered eager perform
less good than fragmented eager is due to data redundancy.
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Figure 5.12b shows, like in all previous experiments, that none lazy

performs worst, and fragmented eager performs best when it comes to
data degradation. What should be noted however, and this effect can be
best seen from figure 5.13a, is that when a = 1, there is no difference in
performance between the lazy and eager versions of the strategies. This is
because only deletes have to be performed, and no intermediate degradation
steps. When we combine the insert and degradation cost, we see indeed
that the fragmented strategies have the same performance, and that this
performance is lower than the clustered strategies. As said before, this
behavior can be explained by the fact that all data has to be removed at
once, an operation which performs best when all data that is to be removed,
is stored in a single data file.

When a > 1, we see that the fragmented eager strategy wins again; for
the used settings, the degradation cost is more important than the insert
cost, and therefore the strategy with the best degradation performance wins.
What is interesting to see is that the clustered strategies perform better
than fragmented lazy when a = 1, but fragmented lazy scales better on
the number of degradation steps. Looking to the ratios between inserts and
degradation in figure 5.13a, we see that for the clustered and fragmented

strategies the degradation cost is at least as high as the insert cost when
a = 1, while this is not the case for the baseline strategies, showing again
that those clustered, and especially fragmented strategies are not suitable
for implementing limited retention. Note that none lazy is the fastest
strategy concerning inserts; if the degradation cost is not high, which is the
case when a = 1, the insert cost is the most important factor.

Conclusion

Although for the lazy strategies, the insert cost is independent of the
number of degradation steps and thus those strategies scale good with
respect to the insert cost, the eager strategies scale slightly better with
respect to the degradation cost. However, the degradation cost has the
higher impact (when a > 1), making that in the end there is almost no
difference between them. The fragmented strategies perform better than
the clustered strategies, especially when the number of degradation steps
increases.

5.3.5 Overall conclusions

The experiments show the effect on performance when a particular para-
meter is varied. Those experiments validate the hypothesis of section 4.3.1.
We repeat the main conclusions:

• Strategy fragmented eager scales best with the degradation load, but
is bad for inserts.
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Figure 5.12 Insert, degradation and sequential scan cost with varying number of degrada-
tion steps per attribute.
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Figure 5.13 In the limited retention case (a = 1), fragmented strategies perform much
less than clustered strategies. For a > 1, fragmented strategies are better. The number
of degradation steps does not lead to performance differences between lazy and eager
strategies.
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• Strategy none lazy scales best with inserts, but the decrease in de-
gradation performance is in general higher than the increase of its
insert performance.

• When the insert cost grows faster than the degradation cost, the lazy

strategies can be a better alternative to the eager strategies; however,
the insert cost and degradation cost are in general proportional to
each other. A reason for the relatively higher insert cost might be,
for example, expensive integrity checks which have to be performed
before inserting a value in each data file.

• Under high query load, clustered strategies perform better than the
fragmented strategies.

• When a database system only has to support limited retention, and
no intermediate data degradation steps, a strategy other than the
baseline strategy is not recommended. If for some reason another
strategy has to be chosen, the clustered strategies perform better
than the fragmented strategies in this case.

Basically, the experiments show that it is indeed useful to implement data
degradation using fragmented storage structures. However, the perform-
ance gain compared to that of the baseline (none lazy) strategy is not very
high; the most important factor which makes that data degradation does
not lead to a huge performance loss is that data is ordered on degradation
time, and not in B+tree-like structures (see section 4.3.1). This can be easily
concluded from the fact that the cost for degrading a single tuple using
such a structure is in the order of O(log(n)), compared to O(1) for a set of
tuples for degradation friendly structures; therefore we did not implement
B+tree structures for an experimental comparison.

5.4 Degradation-friendly indexes

In this section we analyze the various indexes we discussed in section 4.3.2.
Our target is to make suggestions, analogously to our discussion of the
storage structures, about which index to use in which situation. Apart from
the usual considerations concerning the choice of an index—the balance
between query and insert load—we will take into account that data is
subject to data degradation. Hence, we will investigate how suitable an
index is given the following characteristics:

• Cardinality of the domain, i.e., the amount of distinct values that an
attribute possibly can have (we consider only degradable attributes).
When a generalization tree is used to determine the degradation path
of the attribute, this domain is limited and for the most accurate at-
tribute equal to the number of leaves in the tree. For each degradation
step, the cardinality of the domain decreases until C = 1 when the
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attribute is fully degraded. We assume that when C is low, a point
query will result in a large result set; the selectivity of a query is lower
when C is low than when C is high.

• Degradation load. The higher the degradation load, the more important
a degradation-friendly index is. For some indexes, a balance can be
made between query efficiency and update (degradation) efficiency.

In the following we limit the discussion to point queries, also known as
equality queries. Typically, the number of results will depend on the amount
of tuples N and the cardinality of the domain C. In our context, a query
will result always in N

C results. When we assume that the retention period
of precise tuples is shorter than that of less precise tuples, the amount of
tuples in a precise tuple state set will be lower than in a more degraded
tuple state set. Moreover, because the cardinality of the domain of a set
containing highly precise tuples will be higher, the number of tuples in the
result of a query on precise data will be smaller than that of a query on less
precise data.

5.4.1 B+tree

The cost of traditional B+trees concerning inserts and queries has been
studied thoroughly in literature and therefore does not need much discus-
sion; for a complete study we refer to [99, 43]. Here we limit ourselves to
the observation that since the index is tree-based, accessing a particular
attribute value will take a number of random I/O which is dependent on
the depth of the B+tree. This cost counts for both accessing the value for
answering a query and for updating or removing the value. We disregard
the additional cost needed when the tree needs to be reorganized.

Although the cost for inserting values into the index is high (typically
one or more random I/O per tuple), the use of this index can highly reduce
query cost when the cardinality C is high, and thus the query selective. For
lower cardinality domains, the cost for maintaining the index might be too
high compared to the query cost reduction.

When we use encryption, as suggested in section 4.3.2, data degradation
comes for free, since only decryption keys have to be removed. However,
this assumes that removal of <value,pointer> pairs from the tree can be
done using a lazy method, or that the <value,pointer> pairs do not have to
be removed at all. However, at each lookup in the tree, it is necessary to test
the existence of a valid encryption key to make sure the <value,pointer>
pair does not belong to a removed tuple. Sometimes the index is used to
answer queries without requiring accessing the data files themselves; in
such situations, it is important that the B+tree does not contain invalid
<key,pointer> pairs.
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The comparison of the B+tree index to other indexes is done in sec-
tion 5.4.5.

5.4.2 Bitmap

In the most simple form, a bitmap index is a set of bit vectors, where each
bit vector represents one of the values v in the domain of an attribute. For
each position i, the tuple at position i in the data file contains v if, and only
if, the bit vector for v has a 1 at position i (see figure 4.11 in section 4.3.2).

In general, a one-component index, where each bit vector represents
one value in the domain of the indexed attribute, is space-inefficient but
time-efficient; see [34]. The more components (and thus the less bit vectors
needed to represent all values in a domain), the more space-efficient, and
less time-efficient.

To be precise, for a base-< bn,bn−1, . . . ,b1 > bitmap only
∑n−1

i=1 bi bit vec-
tors are needed and those bitmaps are therefore more space-efficient than
one-component bitmaps, in which the single component contains much
more bit vectors. For example, when the cardinality of a domain is C = 26,
a < 7,4 >-bitmap requires 11 bit vectors compared with 26 in case of a
one-component bitmap. However, finding the positions of a value requires
also n = 2 scans, making those indexes less time-efficient. In general, Chan
et al. [33] conclude:
Time optimal: 1-component index with base sequence < C >. Only one scan

is needed, but the space consumption is highest (C×N bits).

Space optimal: dlog2 Ce-component index with base sequence < . . . ,8,4,2 >.
dlog2 Ce scans are needed, whereas the space consumption is dlog2 Ce×
N bits.

Time / space optimal: 2-component index with base sequence < b2−δ,b1 +δ >,
where:

b1 =
⌈√

C
⌉
,b2 =

⌈
C
b1

⌉
,δ =


b2 − b1 +

√
(b1 + b2)2 − 4C

2

 (5.1)

Note that the base of the time/space optimal index is an approximation;
for details and a comprehensive study about finding this optimum we
refer to Chan et al. [33].

In the context of data degradation, it is important to take into account
the number of data files needed for the index, because this gives an in-
dication of the cost to update it. The space optimal index requires less
vectors; considering that we have to store each component (or even each
bitmap) in a separate data file—although it is possible to combine compon-
ents, or the whole index, into one single data file, which we ignore in this
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discussion—this type of bitmap index will be most efficient for data degrad-
ation. However, since the amount of components, and thus the amount of
scans needed to answer a query, is higher, this index will be less efficient
for answering queries. Hence, the one-component is time optimal (only one
scan needed for answering questions), but less efficient for data degradation
(more bit vectors or components to update). The best trade-off can therefore
most probably be found by using the time/space optimal index, which is a
2-component index.

5.4.3 Bloom filter index

A Bloom filter is an array of bits which are initially set to zero. Hash
functions are used to set k positions in the Bloom filter to one, making it
possible to check if an element is possibly in the data set, or certainly not.
Because hash functions are used, false positives can occur when the index
is queried. See for a more detailed description section 4.3.2.

As for any index, for Bloom filters it is important to know how costly it
is to update the index, especially in the context of data degradation. As for
bitmap indexes, this cost depends on how many files need to be accessed.
In the case of Bloom filters, to determine the number of files needed for the
Bloom filter, we have to make a trade-off between the acceptable number
of false positives and update cost. The number of false positives determine
the effectiveness of the index for answering queries, and has to be limited,
especially when query loads are high. For simplicity reasons, the following
cost estimation is based on a situation where one bloom filter per tuple is
used. When one bloom filter per page would be used, the estimation of false
positives would become more complex; the number of files to be managed
would not change, although the size of each file would be smaller.

When the length m of each Bloom filter (see also figure 4.14) is small,
less data files have to be updated, limiting the amount of costly random
I/O. However, when m is small, the domain of the hash functions is also
small, so that the chance of false positives will be higher. This can only be
partially solved with increasing the number of hash functions, assuming
that using more hash function does not lead to an unacceptable computa-
tional overhead [38]. False positives lead to more I/O at query time since
tuples are fetched which don’t belong to the query result.

To find the relation between false positives and the length m of the
Bloom filters, we consider the following:

• The number of possible Bloom filters of length m containing k ones
and m − k zeros is

(m
k
)
. So, if we take two different attribute values,

and assume that the hash functions are fully random, the chance that
the same k bits are set is 1/

(m
k
)
.

• The chance that an arbitrary attribute value is not equal to another
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attribute value is C−1
C , where C is the cardinality of the attribute

domain.
Hence, the chance of a false positive (two values are different, but the index
returns a positive) is:

P(false positive) =
1(m
k
) × C− 1

C

Then the expected number of false positives when querying a dataset with
N tuples is:

N × 1(m
k
) × C− 1

C

Note that this is only valid under the simplifying assumption that each hash
function sets a different bit of the Bloom filter, which in practice cannot be
guaranteed due to the limited size m.

Using the above equation, we conclude that with m = 40, k = 3, N =
1,000,000, C = 10,000 there are about 100 false positives. However, we
can calculate that there are also 100 true positives given the size of the
domain and the number of tuples and assuming that the attribute values
are uniformly distributed over the dataset. This number of true positives
is already too high to justify the use of an index since scanning the whole
table using a sequential scan will be much cheaper. Hence, with lower
cardinalities, an index is only useful when the selection predicate is a
conjunction of equations—for example, select ∗ from R where A = a and

B = b—so that the number of true positives will be much lower. In such a
scenario the number of false positives is also automatically reduced, because
the chance of a false positive for the same position in both indexes is small.

Unlike Bitmap indexes, the number of data files m is independent of the
cardinality C (apart from keeping the number of false positives low). This
makes an index using Bloom filters interesting for larger domains. We give
a full comparison and indications for the applicability of the indexes later,
in section 5.4.5.

5.4.4 Hash Sequential list

A hash sequential list index (hsl) consists of a set of hash buckets containing
value/pointer-pairs, which are ordered on insert time. The bucket in which
a value will be placed is determined by a hash function on that value; a
bucket can contain different values. Buckets can be maintained as heap
files, in a similar fashion as the sequential data structures discussed before.
Hence, multiple tuples can be removed using one I/O operation per hash
bucket, making the index interesting for data degradation.

The efficiency of the hsl index depends on the size and number of
buckets. However, there is a clear balance between query efficiency and
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degradation efficiency: if the buckets are large, more data has to be accessed
to answer a query. If the buckets are small, more random I/O operations are
needed to remove data from all buckets, since each bucket will be stored in
its own data file. The techniques to manage degradation, as discussed in
section 4.3.1, can be applied to degrade data from the buckets.

5.4.5 Comparison of indexes

Now we have discussed four types of indexes, we will compare them and
indicate:

• Which index is most suitable to use, at which level of precision?

• Which index performs best under which condition with respect to
query and insert load, taking data degradation into account.

To answer the first question we have to look at how dependent the indexes
are on the cardinality of the domain, in terms of insert, degradation and
query cost. B+trees are little dependent on this cardinality, and are there-
fore suitable for high cardinality domains—typically the lowest level of
the generalization tree. The hash sequential list index can also manage
high cardinality domains; the hash buckets will only be shared by more
different values. Hence, both indexes are good candidates for data with
high precision.

Bitmap indexes do not scale well in terms of the cardinality of the
domains they can handle. We saw that for an one-component index, we
have to manage C data files if we choose for the space-optimal index, ‘only’
dlog2 Ce data files, and if we choose for the time/space-optimal index the
number of data files will be—see section 5.4.2 and equation 5.1—

∑n−1
i=1 bi ≈⌈√

C
⌉

+
⌈

C√
C

⌉
= 2 ×

⌈√
C
⌉
. When the cardinality is high, more bit vectors

have to be managed which makes the index less efficient for inserts and
degradation.

Bloom filters are hardly dependent on the cardinality. Still, when the
cardinality is lower, the efficiency of the index will suffer from the higher
amount of false positives, which depends on the size of the dataset N, the
choice of the size of the Bloom filters m, and the number of hash functions.
The amount of false positives is:

N × C− 1(m
k
)
×C

So, for lower cardinality domains, to keep the number of false positive
limited, we have to maintain more data files, which is more costly for data
degradation.

Taken those characteristics into account, we conclude that B+trees (with
encrypted pointers) and hash sequential list indexes are good for high
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tss0 tss1 tss2 tss3

B+tree / hash Bloom filter bitmap

C

Figure 5.14 Choice of indexes given the precision (measured in the domain cardinality C)
of the data. Where the data would normally have been indexed using one single index per
attribute, with data degradation we choose a suitable index for each tuple state set.

cardinality domains—the lower level of the generalization tree where data
is highly precise—Bloom filter indexes for medium cardinality domains,
and bit map indexes for the low cardinality domains—where the data is
highly degraded.

Traditionally, the use of an index, and the choice of an index is always based
on the expected insert and query load. In our context, degradation adds
an additional parameter which has to be taken into account. Especially
when there are many degradation steps, the degradation-friendliness is
important.

Basically, indexes based on sequential ordering of the data file on in-
sert and degradation time are well suited for degradation. Hence, those
indexes—especially bitmaps and Bloom filter indexes—are a good choice
when inserts play an important role, while the cost for data degradation can
be limited. The low query cost of B+trees, especially when the queries are
highly selective, make that this index is interesting when query load is high
compared to the insert load. Moreover, thanks to the encryption technique,
data degradation comes for free. With the hash sequential list, a good
balance is possible between query, insert and degradation cost by playing
with the size of the hash buckets. Hence, this index can be considered as
a good ’all-round’ index. For a schematic overview of this conclusion, see
figure 5.14.

5.5 Conclusion

In chapter 4 we identified the technical implications of data degradation on
traditional database management systems, and proposed solutions to speed
up data degradation. In this chapter we evaluated the proposed storage
structures using a prototype implementation, and the degradation-friendly
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indexes using an analytical study.
The prototype facilitates experimental evaluation of the storage struc-

tures, so that a comparison of the storage structures is possible. The pro-
totype cannot be used to show the impact of data degradation compared
to traditional database systems without data degradation. The comparison
showed that using fragmentation, combined with an eager storage strategy
results in the best trade-off between insert and degradation cost, especially
when degradation load is high due to a high amount of degradation steps.
The performance study also showed that when only limited retention is
used, and no intermediate degradation steps, the baseline strategy performs
almost as good as all other strategies. Moreover, the main performance gain
is possible because all storage structures are based on the heap file structure;
the discussed variations of the basic heap structure are useful to tweak
performance given specific application requirements.

The analysis of index structures showed that for different levels of
precision, different indexation strategies are useful. For high cardinality do-
mains, where the precision of data is high, the B+tree index with encrypted
pointers is the most obvious choice, together with the hash sequential list
index. For intermediate levels of precision, the Bloom filter index is the best
choice, and for the least precise data bitmap indexes are most applicable.

The prototype we built from scratch is already capable of testing the
storage structures. A more extensive performance study could include an
implementation of the index structures; the prototype is modular enough to
include this. Moreover, the prototype can be extended to test the transaction
synchronization protocol, and the logging mechanism. Such a prototype
can show the feasibility of data degradation, as a proof-of-concept that data
degradation can indeed be applied in practice.

As a final remark, we recommend that data degradation should be
implemented in a traditional database system, which we therefore consider
as an important future work direction. This would make it possible to
measure the performance loss of data degradation in a real-world setting.
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Data degradation is an interesting approach within the field of privacy-
aware data management, and necessary to lower the impact of unauthorized
data disclosure. The approach is new, and therefore opens up many in-
teresting research directions, especially on how to use the concept of data
degradation in practice.

We describe some instantiations of the degradation model. For two of
those models we do this in more depth, to provide a strong foundation for
future research on this topic. In the first model, the service-oriented model
(section 6.1), we drop the statement that privacy and usability should be
negotiated, and put the service-provider in control of specifying which data
it needs for which purposes. Data degradation will make sure that no data
is kept in the system with a higher precision than required to fulfill those
purposes.

The second model, the ability-oriented model (section 6.2), goes one step
further; here the objective is to manipulate the data such that the data can
only be used for a limited set of queries.

We conclude with some additional instantiations and usages of data
degradation, paving the way to new privacy solutions based on the limited
retention of data, in section 6.3.

6.1 Service-oriented data degradation

A single data item is often collected for multiple purposes; we assume that
a single service is assigned to fulfill one of the purposes, and all purposes
are assigned to a service. To fulfill its purpose, a service requires the data to
have a specific level of precision. In the service-oriented data degradation
model, the objective is to store each data item with the lowest precision
needed, such that each service can fulfill its purpose. Once one of the
services has fulfilled its purpose, the precision needed to serve all other
services will be evaluated again. If the precision can be decreased, the data
item will be degraded.
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6.1.1 Formalization

We assume there is a set Service of services. At any time, a subset is allowed
to access a particular data item. For each service A, the level of precision
required by that service, is denoted with PrecA. At some point in time, a
service should not be able anymore to use the data item, typically when
its purpose has been fulfilled. We name the condition determining that a
service A can no longer use the data item the destruction condition, denoted
by ADC. Hence, at any point in time, there is a set of services for which
the destruction condition has not become true yet; we call this set the state.
So, we define State = P Service and the effect of the event that a destruction
condition ADC becomes true on a state S, is a transition from S to S \ {A}.

The above description can be phrased in terms of automata theory [82].
A control automaton is a deterministic finite automaton responsible to
choose the next level of precision given the current level of precision and
an event. Every data item will be controlled by its own control automaton;
each data item is at any time in one of the states of its automaton.

A control automaton is defined as follows:

Control = < State,Event, transition, init,final >
where

State = P Service

Event = {ADC | A ∈ Service}
init = Service ∈ State
final = {} ∈ State

and

transition : State×Event→ State

transition(S,ADC) = S \ {A}

Now, the service-oriented degradation model requires that for each state S,
the system has to have the data available in precisely the level of precision
needed—and not more—for the services in S to fulfill their purpose. Hence,
the level of precision of a state S is defined as:

Level of precision of state S =
�
A∈S

PrecA (6.1)

The control automaton itself is fixed; it is independent from the services and
can be reused for any application with services requiring different levels
of precision. In figure 6.1a we give the control automaton for a set of three
services A,B,C. When the precisions of A,B, . . . are known, the levels of
precision belonging to each state can be filled in, with a transition table as
shown in figure 6.1b as a result. As in section 3.3, the level of precision is
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{A,B,C}

{A,B}

{B,C}

{A,C}

{A}

{B}

{C}

{}

PrecA = 121
PrecB = 212
PrecC = 132

Cdc

Bdc

Adc

a Control Automaton for 3 applications.

State Event (dc) Next state
P Service,Level Service P Service,Level

{A,B,C},111 A {B,C},112
{A,B,C},111 B {A,C},121
{A,B,C},111 C {A,B},111
{A,B},111 A {B},212
{B,C},112 B {C},132
{B,C},112 C {B},212
{A,C},121 A {C},132
{A,B},111 B {A},121
{A,C},121 C {A},121
{A},121 A {},null
{B},212 B {},null
{C},132 C {},null

b Transition table

Figure 6.1 Example of the control automaton for three services A, B and C. In this
particular example, the services require precisions 121, 212 and 132 respectively. The
control automation, combined with those precision requirements, define a transition table
which describes the life-cycle of the data. For example, if the control automaton is in state
{A,B}, and the destruction condition of service B is true, the data will be degraded to
precision 121.
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{A,B,C}
111

{B,C}
112

{C}
132

∅
DCA DCB DCC

Figure 6.2 A life-cycle from the basic model, now expressed as a control automaton, where
degradation times δ1,δ2,δ3 are identified with events ADC,BDC,CDC.

denoted by a list of digits, each denoting a level of precision for a single
attribute. The level of the highest precision is denoted with number 1. The
lower a precision, the higher its level is numbered. The transition table
gives, for each state and event, the level of precision to which the controlled
data item should be degraded.

As an additional, practical consideration, we foresee the benefits of
acquisition conditions, denoted AAC for a service A, which states under which
condition a collected data item can be accessed by a service. An acquisition
condition has exactly the opposite effect as a destruction condition: the initial
set of services is taken to be those services A for which the acquisition
condition AAC is true.

6.1.2 Comparison with the basic model

In the previous chapters, we presented and discussed the basic data de-
gradation model. The main difference of the basic model, compared to
the service-oriented model, is that one policy—containing only transitions
triggered by time—is specified for all tuples in the database, so that all
tuples have the same life-cycle. Note that this model can be expressed
using service-oriented model notations. To do so we define that destruction
conditions ADC,BDC, and CDC become true exactly after time periods δ1,δ2
and δ3. Figure 6.2 shows the resulting control automaton, where all trans-
itions which cannot take place (because the order of transitions is already
predefined) are omitted.

In the service-oriented model, the life-cycle is not known in advance;
therefore two different tuples can have two different life-cycles, although
the policy itself may be the same. This is because destruction conditions do
not become true after predefined time periods.

6.1.3 Considerations for implementing the model

In the service-oriented model, the life-cycle of a single data item is regulated
by its own control automaton. The automaton takes events as input. Those
events signal the fulfillment of the purpose of a service. After such an
event, the automaton determines the next level of precision of the data item.
Apart from the question how to monitor events (we can simply assume that
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111
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323 333 ∅

312
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a
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213121 131

132 133122
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b

Figure 6.3 For 3 attributes which can have 3 different levels of precision (1 . . .3), there are
33 different levels of precision possible (a). Given a set of services and their required level
of precisions, the life-cycle of a tuple will be a subset of those levels (b). The path which the
tuple will eventually follow depends on the acquisition and destruction conditions. 137
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services themselves report that their purpose has been fulfilled), the main
difficulty is to manage the life-cycle of each individual tuple. In chapter 4
we already discussed in detail the implementation of the life-cycle of a data
item; compared to that work, the service-oriented model introduces two
main difficulties:

• The precise life-cycle is not known in advance and depends on the
order of events. Managing which tuples have to be degraded using
the same degradation schedule is therefore not possible.

• Tuples which have been inserted at the same time do not necessar-
ily degrade at the same time. Optimizations based on the grouped
degradation of tuples need to be more sophisticated.

To manage the degradation of each individual tuple, the degradation sched-
ule will be replaced by a control automaton. The following issues, which
increase the complexity of regulating the life-cycle of each tuple, come to
mind and have to be taken into account:

• Storage. The current level of precision of a tuple is determined by the
set of services for which the acquisition condition was true and for
which the destruction condition has not become false yet. Since the
order in which the destruction conditions become true is unknown—
unless all destruction conditions are based on a time event—and the
acquisition conditions can for example be based on the current data-
base population, the actual life-cycle of a tuple cannot be determined
in advance. What is known, however, is that the life-cycle (the set of
levels of precision of a tuple during its life-time) is a subset of all com-
binations of precision of all attributes (see figure 6.3). Hence, we can
make the following observations about the complexity of managing
the life-cycle of a tuple:

– An automaton, controlling the life-cycle of a tuple for n services,
consists of 2n states. However, the size of the used subset of
the automaton depends on the number of acquisition conditions
which will be false (m). Hence, the actual control automaton
regulating the life-cycle of a single data item consists of 2n−m

states.
– The number of distinct levels of precision in a life-cycle of a tuple

can also be bound by the number of attributes (d) and number of
levels of precision (l). The actual number of possible states in the
life-cycle of a tuple is min(ld,2n−m). The number of degradation
steps is limited by the number of services n, and can be less if
multiple services share the same required level of precision.

A possible implementation is to maintain a table containing a copy
of each tuple in the data set for all its possible future states. With
each event, all versions of the tuple which are in a state which cannot
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be reached anymore and for which the precision is higher than the
current state, will be removed. However, the amount of additional
storage required due to redundancy can be very high, and depends
on n,m, l and d (see above); the number of tables to be maintained is
min(ld,2n−m).

• I/O cost. Thanks to the simplification we made for the basic model,
that all tuples share the same life-cycle, and that transitions can only
be triggered by time, updates to a tuple in the basic model can be
implemented efficiently by storing those tuples close to each other.
Although this simplification does not hold anymore in the service-
oriented model, we might assume that tuples which are collected
close to each other in time, have been collected for similar purposes.
If so, those purposes are also fulfilled close in time, making it still
useful to store the data ordered by time. Especially when we reuse the
ρ-timeliness flexibility, tuples can be marked for degradation, such
that as many tuples as possible can be degraded at each degradation
interval, sharing I/O costs.

6.2 Ability-oriented data degradation

In the basic and service-oriented models, we looked at the degradation of
data as a natural process; degradation of data means that the data becomes
less precise. The assumption was that data can still be used when it is less
precise, although the usability has been decreased. In the service-oriented
model, we assumed that services require a particular precision, and cannot
fulfill the purpose when the data is not precise enough.

In the following, we propose an ability-oriented data degradation model;
the objective is to degrade the ability of what can be done with the stored
data, while guaranteeing that the queries required by the services can be
performed on the degraded data with the intended result. Other queries
which require data which are less manipulated than the allowed queries,
are not guaranteed to give correct or meaningful results anymore.

For example, time can be represented in various forms. Time t1 and
t2 can be represented as ‘9 a.m.’ and ‘10 p.m’ respectively, but also as
‘morning’ and ‘evening’, or as ‘18842’ and ‘23123’. The value ‘morning’ can
be derived from the absolute time value ‘9 a.m’, but the fact that 10 p.m is
later in time than 9 a.m. cannot be derived from this time representation,
because the date part is missing. The values ‘188842’ and ‘23123’ represent
an order number, and therefore can be used to order the two time values.

In the following we introduce the ideas behind the ability-oriented
degradation model by means of a formalization of these concepts. This type
of data degradation is related to the management of materialized views.
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6.2.1 Formalization

In the following we use S to denote a schema and R to denote a relation.
Traditionally, a schema is a set of attributes: S = {A1,A2, . . .}. Here, we
identify a schema with the products of the domains of attributes; so S =
{domA1 × domA2 × . . .}, so that R is a subset of S. Tuples t are elements of R
or S. A query Q is a function, mapping relations to relations; so its type is
P S→ PS′ , where S and S′ are schemas. To simplify the discussion, we only
consider bulk inserts: R 7→ R∪R′ is a bulk insert, where the newly inserted
tuples form the set R′ . Both R and R′ have to have the same schema S.

Informally, the objective of ability-oriented data degradation is to de-
grade a data set in such a way, that it is possible to define a query Q′ on the
degraded data which results in the same answer as a specific query Q on the
original data. We call such a degraded set a degraded view of a relation R.
When the degraded view V complies with the above property, it is Q,Q′-
adequate, which we will define more precisely below. Different queries lead
to different degraded views of the original data. To comply with the limited
retention principle, only the tuples in those degraded views must be stored,
and not the original tuples in R.

Let S and S′ be a schema. A degraded view function V is, like a query, a
function of type PS→ PS′ . We name the result of a degraded view function
on a relation a degraded view. We require a degraded view function to be
Q,Q′-adequate, which we define as follows:

Definition 6.2.1. Adequacy. Let S and S′ be a schema, and Q,Q′ queries on
S, and V a degraded view function on S. V is Q,Q′-adequate when for all
R,R′ with schema S:

Q(R) = Q′(V(R))
V(R∪R′) = V(R)∪V(R′)

Note that it is trivial to find, for arbitrary Q, a Q′ and a degraded view
function V which is Q,Q′-adequate, namely Q′ = Q and V is the identity
function. Nevertheless, the objective of the ability-oriented model is to
make the degraded view as minimal as possible, so that it contains the
minimum amount of information to be able to produce the result of Q′ . In
some cases, such a minimal set is the original query Q itself.

However, let V be a degraded view function on R, which is Q,Q′-
adequate. Than, updating V(R) is not always possible without the presence
of the base relation R. Updating an Q,Q′-adequate degraded view would
be easy if the base relation R would be available; first R can be updated to
R′ with the new tuples, after which V(R′) can be computed. However, the
idea behind data degradation and the limited retention principle is that R
itself is not available.
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We give two degraded view functions that are minimal; the queries
involved are the selection and projection. Let S be a schema and S′ a sub-
schema of S, and consider relations and queries over S, with P a predicate
on S. For every of the following choices of Q,Q′ and V we have that V is
Q,Q′-adequate:

Q Q′ V
σP Q Q
πS′ Q Q

For the selection operation, the proof reads as follows; for the projection
the proof is similar.

Q(R)
=

σP(R)
=

σP(σP(R))
=

Q′(V(R))

and
V(R∪R′)

=
σP(R∪R′)

=
σP(R)∪ σP(R′)

=
V(R)∪V(R′)

However, we make here the assumption that the predicate can be evaluated
on the newly inserted tuples, and that the result of this predicate will not
change if the predicate would be evaluated later in time, which is in practice
not always the case. Take for example the predicate t > now()− 10minutes
on a time attribute. This predicate may evaluate to true at insert time, but
to false after 10 minutes.

Finally, we consider a query Q containing the join operator, for example
a self-join on attribute U. Let Q = πS−{U} ◦ (ZU) be the query that maps
R to πS−{U} (RZU R). Let f : U → U′ be an injective function for which
it is computationally hard to calculate f−1, so that it is nearly impossible
to derive an original U-value u from U′-value f (u). We define [U/U′]S
as schema S where attribute U has been replaced by U′, and [U/fU]t as t
where the U component of t, say u, has been replaced by f (u). Now, take
Q′ = πS−{U′} ◦ (ZU′ ) and V = [U/fU], then V is Q,Q′-adequate. The proof is a
similar calculation as above.

In practice, f can be a one-way hash-function. Note however that a hash
function is not an injective function by definition, although—when used
properly in practical situations—it can be assumed to be nearly injective,
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with low chance of duplicate hash values. By replacing the original join-
attribute value u by a so-called join-key value f (u), the join can be performed
without knowing the original values; the only requirement is that this
join-key is unique for each attribute value, which is implied by injectivity
of f .

We believe that for many types of queries, for example involving a sort
operator, a degraded view can be found which is adequate. The benefits
are clear: the less information has to be stored to answer particular queries,
the lower the impact is in cases of unauthorized data disclosure. Relating
adequacy to other privacy preserving techniques, and providing degraded
views for various operators or abilities, is future work. The ability-oriented
degradation model is an interesting future research direction, and an addi-
tion to the basic and/or service-oriented degradation model.

6.2.2 Considerations for implementing the model

Similar to our proposals in the context of the service-oriented model, one
way to implement this model is to maintain for each service, for each of its
queries, a degraded view. Inserts will be inserted directly into the view, and
data will be removed from the view if there is a retention period attached
to the data.

To some extent, maintaining a view of degraded data is similar to main-
taining traditional materialized views. Much research has been done on
maintaining materialized views, of which most deals with the relevancy
of updates for the view. For example, it is useful to know if an insert is
independent of the query for which the view has been built [19]. When
there is only partial or no information—there is no base relation from which
the view can be recalculated—those algorithms can determine if the view
needs to be updated. Efficient algorithms exist to perform the update it-
self [19, 20, 46]. The views which do not need a base relation are called
self-maintainable views. The requirement of not needing a base relation is
important in the context of limited retention.

According to Levy [63], knowing whether a query result on a view is
complete and correct, can be expressed in terms of query dependency. An
inserted tuple is query dependent if the tuple changes the result of the
query. This means that the performance issues can be concentrated on how
costly it is to check if an incoming tuple results in an update of a view.
Moreover, if a tuple is query dependent for k different queries, the tuple must
be inserted in k separate views generating k I/Os (instead of just one I/O
in the original base relation). Further research must resolve if this really is
an issue. Conceptually, the tuple must be inserted in k separate data sets,
but this does not necessarily mean that the data needs to be replicated k
times. Attributes which are not subject to any degradation might be stored
in separate data files, and used in multiple materialized views. Fragmented
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storage structures might prove useful in such case.

6.3 Other models

6.3.1 User-oriented data degradation

In a user-oriented approach, the user is supposed to have full control over
what part of the privacy-sensitive data should be retained and degraded
by the service provider. In a basic implementation, a user can be given the
possibility to manually mark tuples to be deleted, or attach a policy to each
individual tuple, which then has to be enforced by the service provider.
More sophisticated methods to give users control over their own digital
trails are explained using the following scenario.

Let us consider a scenario in which Google gives users control over what
will be stored in their query log, comparable with Google’s own Web History
service [115]. With this service, Google gives their users the possibility to
browse through their personal query log, and mark items for deletion.

A more sophisticated system would allow users to provide a set of
privacy-sensitive keywords. All queries containing those keywords are
marked for deletion, or will have a shorter life-cycle. To go a step further,
all queries in the query log leading to websites containing keywords from
the privacy-sensitive set, are removed from the log.

Finally, data-mining algorithms might be used to identify certain clusters
of users sharing the same characteristic, e.g., a cluster C in which all users
suffer from cancer. All queries in the query log, which make that a user is
member of C, have to be removed from the query log, if the user requires
this.

The benefit of a model in which users mark tuples for degradation, is that
in many cases only a small subset of a data set will be subject to data
degradation, or limited retention. If services are not particularly interested
in this very privacy-sensitive data, then usability will not suffer from this
model.

6.3.2 Upgradeable data degradation

Data degradation, as a limited retention model, is supposed to be irre-
versible; once a data item has been degraded, it should not be possible to
upgrade the data item to its previous level of precision. However, in some
situations it might be desirable to be able to have access to a more precise
version of a data item.

In chapter 2.3 we argued that most existing security techniques cannot
prevent attacks as described in our threat model. However, client-side
protection methods are possible solutions to prevent unauthorized data

143



6. Future research directions

disclosure, although they are hard to use in practice and require severe
changes in the way service-providers can use the data. Nevertheless, client-
side protection can be a tool to make it possible to upgrade degraded data
on a temporary basis to its precise, original value.

We foresee three possible implementations. In these implementations,
the service provider maintains the data at its own servers, and applies data
degradation. Each user is represented by a user agent.

• An original, precise copy of each data item is stored at the client, and
managed by the user agent. When the service provider needs a more
precise version, it can ask the user’s agent for it.

• The service provider keeps a precise copy of each data item, but in
an encrypted form. The service provider can ask the user’s agent for
a license, to decrypt the item. Such an approach is similar to digital-
right management [124]; the rights are now managed by the user in
a fine-grained way instead of the service provider. For example, this
allows the user to provide temporary access to a particular data item.

• The user agent can provide, when requested by the service provider,
the ‘missing part’ of a degraded data item. For example, the user
agent provides the minute and second part of a time stamp, so that
the service provider can reconstruct the original time value.

Those particular implementations have benefits in terms of communication
costs, storage costs and user control abilities, making it an interesting future
research direction.

6.3.3 External data degradation

So far, we focused on data-degradation as an integral part of an autonomous
storage system, such as a database management system. We made the
assumption that such a system is honest, and as such, respects and enforces
the degradation policies. We provided techniques to make sure that data
will be irreversibly degraded.

However, in practice, a database system is only one of the components
in a complex architecture. Data may flow around in a network, distributed
around many nodes. Data will be queried and transferred to applications
running on machines somewhere in the network. Until now we assumed
that queries don’t keep local copies of the data, or at least remove them as
soon as possible, but in practice, without additional measures, data might
end up in local caches and then escape data degradation.

An interesting approach is to bind the degradation policy to the data
while the data is traveling through the network, and make network compon-
ents degradation-aware. For example, network switches or routers check
the policy attached to each data item, and block (or remove the data item
from the stream) if the data item does not comply with its policy. If the
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Figure 6.4 An infrastructure with clients, a server, and databases, connected with each
other in a network. All components are connected with the Internet through a firewall (point
F in the diagram). Only data items which are not subject to data degradation are allowed
to pass the firewall. Within the network, network components, such as switches (points S),
check if the stream of data contains data which should have been degraded, and degrade
this data when necessary.

precision of the data item is too high, the network component can degrade
the data on the fly. For an interesting starting point to implement such an
architecture, we refer to Kodeswaran et al. [58].

Still, a degradation-aware network as pictured in figure 6.4, in which
each network component performs degradation operations on the data,
does not prevent that data can still be kept in local storages without being
degraded. Physical attacks on those local storages will still result in the
disclosure of data which is more precise than should be. Although it is
possible to implement data degradation in storage systems, it is not feasible
to implement the technique in all types of devices which might connect to
the network (such as mobile phones, pdas, et cetera). Future research should
resolve how to deal with this issue.
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6.4 Conclusion

Data degradation can be used in various ways; we presented several models
using the principle of decreasing the precision of data over time to de-
crease the impact of unauthorized data disclosure. Both service-oriented
and ability-oriented models take the limited retention principle literally:
only data is kept which is useful for a certain purpose. Those models are
therefore particularly useful in scenarios where purposes can be clearly
identified as fulfilled or not.

A question arising from each model instantiation is how to implement
the model, and what the performance penalty will be. We investigated
the impact of the basic model on database management systems; some of
the techniques described for the basic model can be used in other models.
However, an open issue is what the price will be of implementing a privacy
model.

Finally, an open question is to what extent each proposed model impacts
both usability and privacy. To be able to give clear indications, each model
needs to be further formalized and analyzed.
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Limited retention of data is an approach to limit the impact of unauthor-
ized data disclosure, and is based on the principle that data should only
be retained as long as there is a purpose for it. Limited retention is a fun-
damental privacy principle, described in various privacy laws. Within the
field of privacy-aware data management, limited retention is orthogonal
to disclosure prevention techniques—security mechanisms such as access
control—and anonymization techniques. Those other techniques do not
protect against unauthorized disclosure, something which has shown to be
inevitable, making limited retention a necessary addition to privacy-aware
data management.

This thesis has focused on various aspects of limited retention, and gives
answers to the following research questions. Where possible, we will give
an indication of future work which has still to be done to get more insight
in the particular subject.

7.1 Revisiting the research questions

Research question 1. How to model the interest of both service provider
and user, to find the best retention period of privacy-sensitive data?

Limited retention periods are often overstated because fulfillment of a
purpose cannot always be clearly defined. To find reasonable retention
periods, not only in favor of service providers, but also taking the privacy
concerns of users into account, we proposed in chapter 3 a framework to
balance usability and privacy. In this framework, we model the interest
of both service provider and user, and show how those interests can be
combined in what we name the common interest. The framework helps to
maximize this common interest.

The interest of the service provider is to maximize the usability of the
data, expressed in the worth of the data. Although the worth of a single
data item depends on many factors, we made the abstraction that the worth
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of a data item only depends on its age. Moreover, we made the assumption
that the worth of a data item decreases when the item gets older.

The interest of the user is to maximize its privacy, and minimize the
risk of a privacy violation. Again, although also the privacy sensitivity of a
data item depends on many factors, we made the abstraction that privacy
depends on the amount of data stored at the service provider, which in turn
depends on the retention period.

The common interest of service provider and user is the combination of
the individual interests. We expressed common interest as a single function
with only one argument, which is the retention period. We showed that,
under the assumption that the worth of a data item decreases with age, the
common interest function has a maximum, which it takes on a argument
which can be considered as the optimal retention period.

The existence of this maximum can be interpreted in the following
way. By setting the retention period smaller than the optimum, the user
will gain more privacy, but the common interest will be lower because the
decrease in stored data induces a greater loss of total worth for the service
provider. Similarly, by setting the retention period larger than the optimum,
the service provider will gain more total worth of the stored data, but the
common interest will be lower because of a larger decrease of the user’s
privacy.

Summarizing, we succeeded to model the interest of service provider and user in
an abstract, qualitative way; when such a model is quantitatively specified, we
can indeed calculate the optimal retention period.

Research question 2. How to refine the limited retention principle, to
better balance the interests of service provider and user?

In chapter 3 we introduced the concept of data degradation. Instead of
removing a data item in one single step, as is the case with limited retention,
the precision of the data item will be progressively decreased until the data
item will be finally removed. The assumptions we make is that the privacy
sensitivity of a data item is proportional to the precision of the data item,
and that a data item with decreased precision can still be useful for the
service provider.

We included data degradation in our framework, and showed that a
higher common interest can be achieved by sacrificing some precision to
get more privacy in return, especially when the privacy increase is higher
than the loss in worth. In our analysis, we showed cases where it is indeed
useful to progressively degrade the data from precise states to less precise
states until final destruction of the data. This makes it possible to make a
better balance between the interests of service provider and user, resulting
in a higher common interest.
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Thus, by progressively degrading data instead of removing data in one single
step, a higher common interest can be achieved. Data degradation makes it
possible to balance the interests of service provider and user better than limited
retention can do.

Research question 3. What is the impact of data degradation on traditional
database systems, and is it feasible to implement the technique?

Data degradation has a high impact on almost every component of tradi-
tional database systems, namely on storage, indexing, transaction manage-
ment and logging:

• Storage. Tree-based storage structures, by default used to speed
up queries, will inevitably lead to poor degradation performance.
Each degradation of a tuple will result in one or more I/O opera-
tions, which is costly. To overcome this problem, several degradation
friendly storage structures have been proposed, all based on heap
structures. Tuples are stored in insert order, and therefore also on de-
gradation order. By allowing some flexibility in the retention periods,
multiple tuples can be degraded together, sharing I/O costs. By frag-
menting tables over several data files, the amount of data transferred
at each degradation step can be minimized, leading to an improve-
ment of degradation performance. Moreover, by pre-computing each
degradation step, costly read/write updates can be prevented, so that
degradation can be performed by writes only. However, every pro-
posed structure has its benefits in terms of insert and degradation
performance.
In chapter 5 we experimentally analyzed the proposed storage struc-
tures using a prototype implementation, and gave an analysis of the
index structures. We chose to implement a prototype from scratch,
instead of adapting a traditional database management system, to be
able to make a fair comparison between the storage structures, and to
have full control over all operations.
The experiments show that fragmented storage structures perform
better in the context of heavy data degradation, although the differ-
ences between the various strategies are small. Especially when there
are only a small number of degradation steps, or when only limited
retention has to be implemented, a basic heap structure performs well
enough without requiring additional optimizations.

• Indexing. We investigated the impact on index structures. Not only
data stored in the data files have to be degraded, at each degradation
step, but also the indexes have to be updated. We therefore proposed
several data degradation friendly indexes. Moreover, since data will
be degraded, queries will become less selective; some indexes are
more useful with respect to low-selective queries than others. In
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section 5.4.5 we compared the proposed indexes, and argued that a
b+tree index, using encryption methods to efficiently remove tuples
from the tree, is most suitable for highly precise attributes. The other
proposed indexes, such as bitmap indexes and bloom filter indexes,
benefit from the fact that data is stored in degradation order, and are
especially useful for smaller domains, and thus for less precise data.

• Transaction management. Data degradation adds complexity to
transaction mechanisms. Each insert transaction leads to several
degradation side-transactions that have to be performed on time, and
cannot be rolled back or aborted. We proposed a synchronization
protocol which minimizes the number of regular user transactions
that have to be blocked or aborted. We showed that only some long-
running transactions, which use the oldest to be degraded data, might
have to be aborted; something which is unlikely to happen when
allowing a sufficiently large flexibility in retention periods.

• Logging. Data degradation has an impact on logging mechanisms. To
avoid that data items have to be removed from log files, we proposed
to pre-compute every degradation step of every tuple, and encrypt
every degraded representation of the tuple with a different encryption
key, and store the encrypted values in the redo log. Every encryption
key, which can be shared by a set of tuples, will be overwritten at the
end of its retention period, so that the log entries cannot be decrypted
anymore.

The question remains whether or not it is feasible to implement data de-
gradation. We proposed several techniques to implement data degradation
on top of a relational database system. The objective of all techniques is
first to degrade the data in an irreversible way, and second, to minimize the
performance penalty of data degradation. So, it is feasible to implement
data degradation so that it complies with the limited retention principle,
although we cannot conclude from the experiments whether or not the
performance penalty is acceptable.
Summarizing, data degradation has impact on the storage structure, index-
ing, transaction management, and logging mechanisms. We provided several
techniques to implement data degradation, showing the feasibility of data de-
gradation, although we cannot yet decide whether the performance penalty of
data degradation is acceptable.

Research question 4. How can the concept of data degradation be further
exploited when some of the simplifications are released?

The basic model is based on two simplifications: first, all transitions are
triggered by time, and second, every tuple is subject to the same degradation
policy. As an outlook to future research, we proposed in chapter 6 various
models in which those simplifications are released.
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• In the service-oriented data degradation model, the objective is to
store each data item with the lowest precision needed, with which
each service can fulfill its purpose. Once one of the services has
fulfilled its purpose, the precision needed to serve all other services
will be evaluated again. If the precision can be decreased, the data
item will be degraded. In this model, the life-cycle is not known in
advance; therefore two different tuples can have two different life-
cycles, although the policy itself may be the same. This is because
purposes are not always fulfilled after predefined time periods.

• In the ability-oriented data degradation model, the objective is to
degrade the ability of what can be done with the stored data, while
still guaranteeing that the queries required by the services can be
performed on the degraded data with same result. Other queries
which require data other, or in another form than used by the allowed
queries, are not guaranteed to give correct or meaningful results
anymore.

Besides, we proposed two additional models: first, with upgradeable data
degradation, degraded data can temporarily be upgraded, using information
explicitly provided by the user himself. Second, in the external data de-
gradation model, data is not only subject to degradation in an autonomous
storage system, but will be degraded while traveling through a network
infrastructure.

In summary, by releasing the simplifications underlying the basic model, new
directions open up for exploitation: service-orientation and ability-orientation.
These need further investigation.

7.2 Future work

In chapter 6 we gave research directions for new degradation models. Here
we list additional work that needs to be done to complete the theory and
practice of data degradation.

Privacy metric for data degradation. Throughout this thesis, we assumed that
the privacy sensitivity of a data item is proportional to its precision.
We have not been able to capture the privacy benefits in a metric, mak-
ing it hard to quantify to what extent data degradation contributes in
lowering the impact of unauthorized data disclosure.

Defining interest functions. The interest functions for a single data item, which
we defined in chapter 3, are only proportional to the retention period
of the data item. Both privacy and worth functions can depend on
various parameters other than the age of a data item. For example,
users can choose different ‘risk profiles’ depending on the nature of the
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data items, and service providers can attach a lower worth to specific
data based on the user, location, and time of the day.
Moreover, for practical reasons, an important question is if and how
service providers will be able to express their worth functions. To put
our framework into practice, it is necessary to provide tools which
enable service providers to give transparency about their need to
collect personal data.

Integration with a traditional DBMS. To be able to show the feasibility of data
degradation, it is recommended to implement data degradation as an
extension to an existing database management system. This way data
degradation can be used and tested within real-world scenario’s, and
experiments can show the performance impact of data degradation
compared to traditional database management systems.

Extending the prototype implementation The prototype implementation, in this
thesis used to compare storage structures, needs to be extended with
indexes and logging mechanisms, so that a complete research plat-
form is created to test all aspects of data degradation. We hope that
techniques developed on such a prototype can find their way into
traditional database management systems.

7.3 Concluding remarks

Privacy-aware data management has become a popular research topic, and
deserves much attention. Triggered by a growing risk on privacy violations
due to the collection of huge sets of personal information, new techniques
have to be found to limit the impact of unauthorized data disclosure. We
believe that the work in this thesis paves the way for solutions in this
important area.

The framework we presented in this thesis shows that it is indeed pos-
sible to reason about retention periods so that not only service providers,
but also users of those services will be satisfied. The techniques we pro-
posed show that data degradation is feasible; they should be an integral part
of any storage system handling privacy-sensitive data. So, we presented a
promising approach to close the huge gap between the enormous amount
of collection and storage of personal data, and the risk users have to take to
be able to profit from all the new and exciting services offered to us today
and in the future.
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Summary

Service-providers collect more and more privacy-sensitive information,
even though it is hard to protect this information against hackers, abuse of
weak privacy policies, negligence, and malicious database administrators.
In this thesis, we take the position that endless retention of privacy-sensitive
information will inevitably lead to unauthorized data-disclosure. Limiting
the retention of privacy-sensitive information limits the amount of stored
data and therefore the impact of such a disclosure.

A problem of limited retention is that the retention period is often
overstated in advantage of the service-provider. We model the interests
of service-provider and user in an abstract, qualitative way; when such
a model is quantitatively specified, it is possible to calculate the optimal
retention period for the joint interest of service-provider and user.

The all-or-nothing behavior of limited retention is too rigorous: the data
will be completely destroyed, also destroying any possible use of the data.
Progressively degrading a data item instead of removing the data item in one
single step makes it possible to balance the interests of service-provider
and user better than limited retention can do. At every degradation step,
the precision of a data item will be decreased. Degraded data is supposed
to be less privacy-sensitive, and still usable enough to motivate a longer
storage.

However, removing data from a database system is not a straightforward
task; data degradation has an impact on the storage structure, indexing,
transaction management, and logging mechanisms. To show the feasibility
of data degradation, we provide several techniques to implement it; mainly,
a combination of keeping data sorted on degradation time and using en-
cryption techniques where possible. The techniques are founded with a
prototype implementation and a theoretical analysis.

Finally, we explore several models which build further on the basic
data degradation model. This gives different perspectives from which data
degradation can be used.
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Samenvatting

Dienstverleners verzamelen steeds meer privacygevoelige gegevens, ondanks
het feit dat het moeilijk is om deze gegevens te beschermen tegen krakers,
zwak privacybeleid, nalatigheid, en kwaadwillende gegevensbeheerders.
In dit proefschrift nemen we de positie in dat het eindeloos bewaren van
privacygevoelige gegevens onvermijdelijk zal leiden tot het op straat komen
te liggen van deze gegevens. Door het beperken van de opslagperiode kan
de privacyschending bij dergelijke gevallen ook beperkt worden.

Vaak wordt er een lange opslagperiode gehanteerd in het voordeel van
de dienstverlener. Wij modelleren het belang van zowel de dienstverlener
als de gebruiker op een abstracte, kwalitatieve manier; met een dergelijk
model is het mogelijk een opslagperiode te bepalen die optimaal is voor het
belang van zowel de dienstverlener als de gebruiker.

Door gegevens ineens volledig te verwijderen gaat ook elk mogelijk
nut van de gegevens verloren. Door de gegevens langzaam te vervagen,
wordt het mogelijk om een betere afweging te maken tussen het belang van
dienstverleners en gebruikers. Bij elke vervagingsstap neemt de nauwkeur-
igheid van een gegeven af; wij nemen aan dat gegevens met een lagere
nauwkeurigheid nog steeds bruikbaar zijn voor dienstverleners, maar ook
minder privacygevoelig, zodat een langere opslagperiode acceptabel is.

Het vervagen van gegevens heeft invloed op de manier hoe gegevens in-
tern technisch opgeslagen worden, het gebruik van indices, transactiebeheer,
en logmechanismen. Om aan te tonen dat het vervagen van gegevens prac-
tisch doenlijk is, beschrijven we verschillende technieken om gegevensver-
vaging te implementeren. Dit komt hoofdzakelijk neer op het gesorteerd
houden van gegevens op het tijdstip van vervaging, en het gebruik van
encryptiemethoden. Onze technieken worden onderbouwd door een proto-
type en een theoretische analyse.

Daarnaast verkennen we verschillende modellen die voortborduren op
het concept gegevensvervaging. Dit leidt tot verschillende perspectieven
van waaruit het vervagen van gegevens in de toekomst verder ingezet kan
worden.
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Résumé

Les fournisseurs de services recueillent de plus en plus d’informations
personnelles sensibles, bien qu’il soit réputé comme très difficile de protéger
efficacement ces informations contre le piratage, la fuite d’information par
négligence, le contournement de chartes de confidentialité peu précises, et
les usages abusifs d’administrateurs de données peu scrupuleux. Dans cette
thèse, nous conjecturons qu’une rétention sans limite de données sensibles
dans une base de données mènera inévitablement à une divulgation non
autorisée de ces données. Limiter dans le temps la rétention d’informations
sensibles réduit la quantité de données emmagasinées et donc l’impact
d’une telle divulgation. La première contribution de cette thèse porte sur la
proposition d’un modèle particulier de rétention basé sur une dégradation
progressive et irréversible de données sensibles.

Effacer les données d’une base de données est une tâche difficile à mettre
en œuvre techniquement; la dégradation de données a en effet un impact
sur les structures de stockage, l’indexation, la gestion de transactions et les
mécanismes de journalisation. Pour permettre une dégradation irréversible
des données, nous proposons plusieurs techniques telles que le stockage
des données ordonnées par le temps de dégradation et l’utilisation de
techniques ad-hoc de chiffrement. Les techniques proposées sont validées
par une analyse théorique ainsi que par l’implémentation d’un prototype.
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